Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kansas State University Biomechanics Lab Baseball & softball bats - Outline Brief history of bat development Rules on baseball and softball bats Rigid.

Similar presentations


Presentation on theme: "Kansas State University Biomechanics Lab Baseball & softball bats - Outline Brief history of bat development Rules on baseball and softball bats Rigid."— Presentation transcript:

1 Kansas State University Biomechanics Lab Baseball & softball bats - Outline Brief history of bat development Rules on baseball and softball bats Rigid body properties –Mass –Moment of inertia –Center of percussion Elastic properties –Longitudinal vibrational nodes and modes During impact During swing (diving board effect) Coefficient of restitution (trampoline effect) Is a very rigid bat or a very flexible bat more effective? What and where is the “sweet spot”

2 Kansas State University Biomechanics Lab Brief History of Bat Development: In the Beginning Began with basically a stick around 1830 In 1850’s, handle and barrel were emerging Around 1900, modern-day shape had evolved

3 Kansas State University Biomechanics Lab History of Bat Dev: Late Wood Era From the early 1900’s until ~1970, the wood bat was used exclusively with minor design changes

4 Kansas State University Biomechanics Lab History of Bat Dev: Aluminum Era Aluminum bats first appeared around 1970 Since 1980 materials with higher strength/mass ratios have emerged The plethora of recent innovations are causing concern by softball & baseball governing bodies

5 Kansas State University Biomechanics Lab Latest Developments During the past three years (2002-2005) composite bats have emerged, making them even more lively and durable, and spawning more rule changes This bat has a composite insert to connect handle and barrel to make it super flexible This bat has a composite handle and metal barrel, and is super flexible The hottest bat on the market today – it is all composite materials and it is illegal

6 Kansas State University Biomechanics Lab Latest Development in 2006: Nanotechnology

7 Kansas State University Biomechanics Lab Nano- technology, cont’d

8 Kansas State University Biomechanics Lab Bat incorporating Nanotechnology (CNT) Outstanding performance for 3 reasons: 1. New CNT Carbon Nanotube technology (CNT) 2. Composite handle giving three times greater flex than aluminum 3. Sc900 Scandium alloy 4.Patented ConneXion technology acts like a hinge to provide the most efficient energy transfer from handle to barrel. ASA and USSA approved

9 Kansas State University Biomechanics Lab Another CNT bat Not ASA approved, but USSA approved, thus it is hotter than previous bat Addition of CNT carbon nanotube technology strengthens composite structures Designed for more handle flex - two times greater than aluminum How do we determine if these innovations are real or bogus?

10 Kansas State University Biomechanics Lab Recent Softball Bat Rule Changes USSSA Softball –Upper limit on “liveness”, or Coefficient of Restitution (COR) – Max BPF = 1.20 ASA Sotball2004 BBS (Batted Ball Speed) standard –Upper limit on “liveness”, or Coefficient of Restitution (COR) –Maximum BBS < 98 mph under these conditions Effective January 1, 2004: Ball COR.44, Bat speed 85 mph, pitch speed 25 mph, multiple impact locations

11 Kansas State University Biomechanics Lab Recent Baseball Bat Rule Changes Amateur Baseball – High School and College –Max barrel diameter 2.625 in (.067 m) –Max length 42” for wood, 36” for nonwood –Length-weight diff(< 3 units diff.) –Max Ball Exit Speed Ratio (BESR) – 94 or 97 MPH –Rules committee is considering a MOI rule

12 Kansas State University Biomechanics Lab Center of Percussion (COP) The COP is the point where an impact does not cause a reaction impulse at the axis, causing the axis to tend to translate Distance from axis to center of percussion (q): q = T 2 g/4 B 2 =.248387T 2 Where T = period of oscillation

13 Kansas State University Biomechanics Lab Center of Percussion Impacts on COP do not cause an impact reaction impulse at the axis (Noble & Eck, MSSE 1986) COP has a conjugate point on the handle. Each point on the handle is associated with a different COP on barrel. (Cross, Am J Phys 1998) If the conjugate point of the COP should be near the center of the hand-bat interface (approx 6 inches from knob end), then impact reaction forces will be minimized.

14 Kansas State University Biomechanics Lab Center of Percussion In most 34-in bats, COP is approx 6 in (15 cm) from barrel end if hitter grips bat on knob end COP can be displaced predictably by changing the weight distribution of the bat (Noble & Eck, Proc ISBS 1986) The best site for COP displacement is in the knob end COP displacement can cause some vibration-related problems because of the node-COP difference discussed later

15 Kansas State University Biomechanics Lab Center of Percussion & the sweet spot Earlier studies indicated that the COP is the sweet spot, the best place to hit the ball (Bryant, RQES 1977; Noble, ISB Proc 1983) The sweet spot has since been defined in terms of two criteria: –The most comfortable location The COP has a direct effect on pain/annoyance at impact (Noble, JAB 1994; Noble) Fundamental vibrational node location also has a profound effect on impact pain/annoyance (Noble, JAB 1994) –The location for maximum post-impact ball velocity Determined by characteristics other than COP (Brody, Am J Phys 1986) –e.g., bat/ball mass and bat vel/ball vel ratios Vibrational node locations

16 Kansas State University Biomechanics Lab Impact vibrations and annoyance Node of fund mode approx 17 cm (6.7 in) from each end and 170 Hz (Cross, Am J Phys 1998) First harmonic is approx 530 Hz with nodes at approx 13 cm from BE, 5 cm from COM toward hands, and 7 cm from KE. Impacts on the node will not excite that mode. Mode excitation increases linearly with impact-node distance Thus we have a “sweet vibrations” zone approx 13-17 cm (5-6.7 in) from BE. –Dan Russell’s Home PageDan Russell’s Home Page

17 Kansas State University Biomechanics Lab Vibrations, COP & Impact Annoyance Node-COP distance is determinant of bat preference (Noble & Dzewaltowski, Tech Report to Easton Aluminum1994) Impact annoyance is least at a point between node of fundamental & COP (Noble & Walker Proc ISBS, 1994)

18 Kansas State University Biomechanics Lab Bat Vibrations During Swing Manufacturer’s are claiming “diving board effect” This implies that bat bends back during the swing and “releases the stored elastic energy at impact, as depicted here Is this implication valid?

19 Kansas State University Biomechanics Lab Bat Flexibility Field Test Effects of bat handle flexibility on performance and preferences First, a controlled blind field test involving 6 different bat flexibilities with 32 elite softball players was funded by a bat manufacturer Results indicated that these hyper-flexible bats resulted in greater post-impact velocity and were preferred by elite slow-pitch hitters over stiffer bats An examination of bat bending characteristics during the swing followed this study

20 Kansas State University Biomechanics Lab Begin Swing 233ms PC Peak 41 ms PC Horiz Pk 38 ms PC Bat bending during swing and impact

21 Kansas State University Biomechanics Lab

22 Begin swing 183 ms PC Peak bending and peak torque ~ 50 ms PC Impact – bat still bent back approx 20% of max

23 Kansas State University Biomechanics Lab Wood vs Aluminum Bats Estimates of post-impact ball velocity of wood and aluminum bat Aluminum bats are better because –COR is higher –Length and weight are independent –Aluminum bats have lower Moment of inertia –Stiffness can be a design feature –Node-COP location can be a design feature

24 Kansas State University Biomechanics Lab Conclusions: Bat Vibrations During Swing and Impact During the swing, the bat bends back and stores elastic energy that is released during impact Thus, a more flexible bat would appear to be more effective if the ball impacts at the sweet spot During impact, the bat behaves as a free-free body A stiffer bat would appear to be more effective if the ball does not impact at the sweet spot. Perhaps a stiff bat is better for baseball and fast-pitch softball and a flexible bat is better for slow-pitch softball

25 Kansas State University Biomechanics Lab So, Where and What is Sweet Spot? It is the best place on the bat to hit the ball, considering –Annoyance/comfort –Post-impact ball velocity This location is: –Location of minimal vibrations (approx 6.5 in from barrel end) –Location of COP with axis approx 6 in from knob end (approx 6 in from barrel end) –Preferably these two areas are close together

26 Kansas State University Biomechanics Lab Criteria for evaluating baseball & softball bats Overall feel, grip, how does it fit your hand(s) Post impact ball response –Control –Power Durability –Resistance to denting, cracking, etc. under normal playing conditions Forgiveness – size of sweet spot Construction quality –End cap, knob, welds, finish Would you buy the same bat again?

27 Kansas State University Biomechanics Lab Softball bat websites to check out Product reviews: –http://www.batreviews.com/http://www.batreviews.com/ –http://www.bandnsoftball.com/ (costs $50 per year)http://www.bandnsoftball.com/ Where to buy bats: –BallGloves.comBallGloves.com Bat testing center: –UMass Bat Research CenterUMass Bat Research Center Physics of bats: –Dan Russell’s Home PageDan Russell’s Home Page –Alan Nathan’s Home PageAlan Nathan’s Home Page


Download ppt "Kansas State University Biomechanics Lab Baseball & softball bats - Outline Brief history of bat development Rules on baseball and softball bats Rigid."

Similar presentations


Ads by Google