Presentation is loading. Please wait.

Presentation is loading. Please wait.

Der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012.

Similar presentations


Presentation on theme: "Der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012."— Presentation transcript:

1 der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012

2 Introducing HerCULES 2 Herschel Comprehensive (U)LIRG EmissionSurvey Open Time Key Program on the Herschel satellite HerCULES

3 Who is HerCULES? Paul van der Werf (Leiden; PI) Susanne Aalto (Onsala) Lee Armus (Spitzer SC) Vassilis Charmandaris (Crete) Kalliopi Dasyra (CEA) Aaron Evans (Charlottesville) Jackie Fischer (NRL) Yu Gao (Purple Mountain) Eduardo González-Alfonso (Henares) Thomas Greve (Copenhagen) Rolf G ü sten (MPIfR) Andy Harris (U Maryland) Chris Henkel (MPIfR) Kate Isaak (ESA) Frank Israel (Leiden) Carsten Kramer (IRAM) Edo Loenen (Leiden) Steve Lord (NASA Herschel SC) Jesus Martín-Pintado (Madrid) Joe Mazzarella (IPAC) Rowin Meijerink (Leiden) David Naylor (Lethbridge) Padelis Papadopoulos (Bonn) Dave Sanders (U Hawaii) Giorgio Savini (Cardiff/UCL) Howard Smith (CfA) Marco Spaans (Groningen) Luigi Spinoglio (Rome) Gordon Stacey (Cornell) Sylvain Veilleux (U Maryland) Cat Vlahakis (Leiden/Santiago) Fabian Walter (MPIA) Axel Wei ß (MPIfR) Martina Wiedner (Paris) Manolis Xilouris (Athens) 3 HerCULES

4 Conditions in ULIRGs  Starbursts cannot be simply scaled up. be simply scaled up.  More intense starbursts are also more efficient are also more efficient with their fuel. with their fuel. (Gao & Solomon 2001) L IR  SFR L IR / L CO  SFR/ M H 2 SFE 4HerCULES

5 (U)LIRGs (U)LIRGs (L IR >10 (11)12 L  ) (Evans et al. ) 5 HerCULES

6 (U)LIRGs from low to high z   LIRGs dominate cosmic star formation at high redshift 6 HerCULES (Magnelli et al. 2011)

7 ISM in luminous high-z galaxies 7  Even in ALMA era, limited spatial resolution on high-z galaxies.  For unresolved galaxies, multi-line spectroscopy will be a key diagnostic (Weiß et al. 2007) HerCULES (Danielson et al. 2010)

8 HerCULES in a nutshell   HerCULES will uniformly and statistically measure the neutral gas cooling lines in a flux-limited sample of 29 (U)LIRGs.   Sample:   all IRAS RBGS ULIRGs with S 60 > 12.19 Jy (6 sources)   all IRAS RBGS LIRGs with S 60 > 16.8 Jy (23 sources)   Observations:   SPIRE/FTS full high-resolution scans: 200 to 670  m at R ≈ 600, covering CO 4 — 3 to 13 — 12 and [CI] + any other bright lines   PACS line scans of [CII] and both [OI] lines   All targets observed to same (expected) S/N   Extended sources observed at several positions 8 HerCULES

9 HerCULES sample Target log(L IR /L  ) Mrk 231 12.51 IRAS F17207—0014 12.39 IRAS 13120—5453 12.26 Arp 220 12.21 Mrk 273 12.14 IRAS F05189—2524 12.11 Arp 299 11.88 NGC 6240 11.85 IRAS F18293—3413 11.81 Arp 193 11.67 IC 1623 11.65 NGC 1614 11.60 NGC 7469 11.59 NGC 3256 11.56 Target log(L IR /L  ) IC 4687/4686 11.55 NGC 2623 11.54 NGC 34 11.44 MCG+12—02—001 11.44 Mrk 331 11.41 IRAS 13242—5713 11.34 NGC 7771 11.34 Zw 049.057 11.27 NGC 1068 11.27 NGC 5135 11.17 IRAS F11506—3851 11.10 NGC 4418 11.08 NGC 2146 11.07 NGC 7552 11.03 NGC 1365 11.00 9 HerCULES

10 10 Mrk231 HST/ACS (Evans et al., 2008)  At z=0.042, one of the closest QSOs (D L =192 Mpc)  With L IR = 4  10 12 L , the most luminous ULIRG in the IRAS Revised bright Galaxy Sample  “Warm” infrared colours  Star-forming disk (~500 pc radius) + absorbed X-ray nucleus  Face-on molecular disk, M H 2 ~ 5  10 9 M  HerCULES

11 Warning: may contain... 11  quiescent molecular (and atomic) gas  star-forming molecular gas (PDRs)  AGN (X-ray) excited gas (XDRs)  cosmic ray heated gas  shocks  mechanically (dissipation of turbulence) heated gas  warm very obcured gas (hot cores) HerCULES

12 Mrk231 SPIRE FTS 12 (Van der Werf et al., 2010) HerCULES

13 Mrk231 SPIRE FTS 13 HerCULES

14 Mrk231 SPIRE FTS 14 HerCULES

15 Mrk231 SPIRE FTS 15 HerCULES

16 Mrk231 SPIRE FTS 16 HerCULES

17 Mrk231 SPIRE FTS 17 HerCULES

18 Mrk231 SPIRE FTS 18 HerCULES

19 CO excitation 2 PDRs + XDR 6.4:1:4.0 n=10 4.2, F X =28 * n=10 3.5, G 0 =10 2.0 n=10 5.0, G 0 =10 3.5 * 28 erg cm -2 s -1  G 0 =10 4.2 19 HerCULES

20 CO excitation 3 PDRs 6.4:1:0.03 n=10 6.5, G 0 =10 5.0 n=10 3.5, G 0 =10 2.0 n=10 5.0, G 0 =10 3.5 20 HerCULES

21 High-J lines: PDR or XDR?   High-J CO lines can also be produced by PDR with n=10 6.5 cm —3 and G 0 =10 5, containing half the molecular gas mass.   Does this work?   G 0 =10 5 only out to 0.3 pc from O5 star; then we must have half of the molecular gas and dust in 0.7% of volume.   With G 0 =10 5, 50% of the dust mass would be at 170K, which is ruled out by the Spectral Energy Distribution   [OH + ] and [H 2 O + ] > 10 —9 in dense gas requires efficient and penetrative source of ionization; PDR abundances factor 100— 1000 lower 21 HerCULES

22 Analysis of analysis 22 HerCULES  Model not unique  At least 9 free parameters, not really a proper fit  Reasonable, based on prior knowledge  External constraints available for all 3 components... but what if we did not have this prior knowledge?  role of H 2 O  role of shocks  role of OH +

23 Modeling-free result Highly excited CO ladders are found in all high luminosity/compact sources with an energetically dominant AGN (and only in those sources). 23 HerCULES

24 Water in molecular clouds  H 2 O ice abundant in molecular clouds  Can be released into the gas phase by UV photons, X-rays, cosmic rays, shocks,...  Can be formed directly in the gas phase in warm molecular gas  Abundant, many strong transitions  expected to be major coolant of warm, dense molecular gas 24 HerCULES Herschel image of (part of) the Rosetta Molecular Cloud

25 H 2 O in HerCULES Target log(L IR /L  ) Mrk 231 12.51 IRAS F17207—0014 12.39 IRAS 13120—5453 12.26 Arp 220 12.21 Mrk 273 12.14 IRAS F05189—2524 12.11 Arp 299 11.88 NGC 6240 11.85 IRAS F18293—3413 11.81 Arp 193 11.67 IC 1623 11.65 NGC 1614 11.60 NGC 7469 11.59 NGC 3256 11.56 Target log(L IR /L  ) IC 4687/4686 11.55 NGC 2623 11.54 NGC 34 11.44 MCG+12—02—001 11.44 Mrk 331 11.41 IRAS 13242—5713 11.34 NGC 7771 11.34 Zw 049.057 11.27 NGC 5135 11.17 IRAS F11506—3851 11.10 NGC 4418 11.08 NGC 2146 11.07 NGC 7552 11.03 NGC 1365 11.00 25 HerCULES red = wet

26 H 2 O lines in Mrk231  Low lines: pumping by cool component + some collisional excitation  High lines: pumping by warm component  Radiative pumping dominates and reveals an infrared-opaque (  100  m ~ 1) disk. (González-Alfonso et al., 2010) 26 HerCULES

27 Lessons from H 2 O (1 + 2 + 3 + 4) 27HerCULES 1) In spite of high luminosities, H 2 O lines are unimportant for cooling the warm molecular gas. 2) Radiatively H 2 O lines reveal extended infrared-opaque circumnuclear gas disks. 3) Extinction and radiative pumping of highest CO lines.4) Detection of H 2 O lines implies high FIR radiation field, but not the presence of an AGN.

28 Lessons from H 2 O (5) Radiation pressure from the strong IR radiation field: 28HerCULES Since both  100 and T d are high, radiation pressure dominates the gas dynamics in the circumnuclear disk. 5) Conditions in the circumnuclear molecular disk are Eddington-limited.

29 Mechanical feedback   Radiation pressure can drive the observed molecular outflows (e.g., Murray et al., 2005)   Aalto et al., 2012: flow prominent in HCN  dense gas   Key process in linking ULIRGs and QSOs?   Shocks probably of minor importance in Mrk231 29 HerCULES (Feruglio et al., 2010) (Fischer et al., 2010)

30 NGC6240: CO lines as tracers of what? 30 HerCULES   X-ray nuclei  AGNs?   PAH emission  PDRs?   H 2 lines  shocks!   NB: FTS shows 12 CO/ 13 CO > 50 ! Optically thin CO lines

31 NGC253: shocks or PDRs? 31 HerCULES   chemistry  shocks?   H 2 lines  PDRs! SINFONI H 2 v =1  0 S(1), Rosenberg et al., in prep.

32 NGC7469 SPIRE FTS: CO ladder suggests PDR? 32 HerCULES

33 NGC7469 SPIRE FTS: OH + suggests XDR? 33 HerCULES

34 NGC7469 SPIRE FTS: OH + suggests XDR? But no H 2 O +... 34 HerCULES

35 High-z connection (1): H 2 O at z=3.9 35HerCULES  Line ratios similar to Mrk231  FIR pumping dominates, implies 100  m-opaque disk  Radiation pressure dominates, Eddington-limited Van der Werf et al., 2011


Download ppt "Der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012."

Similar presentations


Ads by Google