Download presentation
Presentation is loading. Please wait.
Published byRobyn Styler Modified over 9 years ago
1
Dedicated to the memory of Z.G.Pinsker. (on the occasion of his 100 th anniversary ) ELECTRON DIFFRACTION STRUCTURE ANALYSIS, PART 1. Vera KLECHKOVSKAYA Institute of Crystallography, Russian Academy of Sciences SPECIMENS AND THEIR ELECTRON DIFFRACTION PATTERNS.
2
The basic modern data describing the atomic structure of matter have been obtained by the using of three diffraction methods – X-ray, neutron and electron. Electron diffraction structure analysis is generally used to study thin films and finely dispersed crystalline materials and allows the complete structure determinations up to establishment of the atomic coordinates in the crystal lattice and refinement of atomic thermal vibrations and chemical bounding.
3
All three radiations are used not only for the structure analysis of various crystals but also for the analysis of other condensed state of matter – quasi crystals, incommensurate phases, and partly disordered systems, namely, for high-molecular polymers, liquid crystals, amorphous substances and liquids, and isolated molecules in vapor and gases.
4
SCHEMATIC ILLUSTRATING BRANCHES OF MODERN CRYSTALLOGRAPHY, THEIR APPLICATIONS, AND THE RELATION OF CRYSTALLOGRAPHY TO THE NATURAL SCIENCES “Heart”of this scheme
5
ZINOVII PINSKER BORIS VAINSHTEIN 1904 – 1986 1921 - 1996 “The PARENTS” OF ELECTRON DIFFRACTION STRUCTURE ANALYSIS
6
Electron Diffraction Camera have been constructed by Z.Pinsker and B.Vainshtein -- gold medal on the International Exhibition in Brussels, 1958.
7
the classical monographs: B.K.Vainshtein (1964) Structure analysis by electron diffraction. Oxford, Pergamon Press (in Russia,1956) Z.G.Pinsker (1953) Electron diffraction. London: Butterwords (in Russia, 1949)
8
MAIN STAGES OF ATOMIC STRUCTURE ANALYSIS the obtaining of appropriate diffraction patterns and their geometrical analysis, the precision evaluation of diffraction-reflection intensities, the use of the appropriate formulas for recalculation of the reflection intensities into the structure factors, I hkl ~ K kin |F hkl | 2 + K dyn |F hkl | the solution of the phase problem, Fourier analysis of the structure. xyz) = 1/ F hkl exp[2 i (hx+ky+lz)] hkl
9
ELECTRON DIFFRACTION PATTERNS transmission and reflection mode
10
ELECTRON DIFFRACTION PATTERNS FOR STRUCTURE ANALYSIS UNKNOWN PHASES ONLY THREE TYPE SPECIMENS AND ELECTRON DIFFRACTION PATTERNS MAY BE USED FOR ATOMIC STRUCTURE ANALYSIS UNKNOWN PHASES MOSAIC SINGLE CRYSTALPLATELIKE TEXTUREPOLYCRYSTAL
11
EWALD CONSTRUCTION FOR X-RAY END ELECTRON k 0, k – wave-vectors, - wave – length, a*, b* - parameters of reciprocal unit cell THE RECIPROCAL LATTICE NET IS SAMPLED BY AN EWALD SCHERE ON RADIUS k 0 =1/. SINCE THE WAVELENGTH OF A 100 kV ELECTRON BEAM IS SOME 40 TIMES AS SMALL AS THAT OF A CuK X-RAY, IT IS OFTEN A SUFFICIENT APPROXIMATION TO SAY THAT THE EWALD SAMPLING SURFACE IS A PLANE IN THE CASE OF ELECTRONS. GEOMETRICAL ASPECTS OF ELECTRON DIFFRACTION
12
SPOT-TYPE ELECTRON DIFFRACTION PATTERNS A CRYSTAL REPRESENT A THREE DIMENTIONAL PERIODIC DISTRIBUTION OF SCATTERING MATERIAL. THE DISTRIBUTION OF POINTS AT WHICH THE SCATTERING AMPLITUDE DIFFERS FROM ZERO AND TAKES ON THE VALUE F hkl IS PERIODIC IN RECIPROCAL SPACE AND FORMS THE SO-CALLED RECIPROCAL LATTICE H hkl = ha* + kb* = lc* a*, b*, c* are axial vectors, h,k,l are point indices A SPOT PATTERN REPRESENTED A PARTICULAR PLANE OF THE RECIPROCAL LATTICE PASSING THROUGH OF THE POINT 000
13
INDEXING OF AN ELECTRON DIFFRACTION PATTERN OF MOSAIC SINGLE CRYSTAL A spot pattern is most conveniently characterized by the general symbol of the reflection located on it. If the plane is a coordinate one of the indices must be equal to zero since the point 000 always lies in it. If the plane is non-coordinate, then none of its three indices (hkl) is equal to zero. Coordinate plane Non-coordinate plane
14
SYMMETRY OF ELECTRON DIFFRACTION SPOT PATTERNS Schematic representation of the structure of the zero layer of the reciprocal lattice for the six classes of geometry in spot electron diffraction patterns The existence of a centre of symmety at a point 000 of the reciprocal lattice of symmetry being recognizable in diffraction phenomena, for only 11 classes of symmetry being recognizable in diffraction phenomena, although 32 classes of crystal symmetry exist. The symmetry of electron diffraction pattern is the symmetry of the plane nets of reciprocal lattice.
15
The relationships between the axis and angles in unit cells: Triclinic: a b c Monoclinic: a b c = Orthorhombic: a b c = = =90 0 Hexagonal: a = b c = = 90 0 Tetragonal: a = b c = = = 90 0 Cubic: a = b = c = = = 90 0 Having only one plane of reciprocal lattice for unknown crystal we can`t determined – this is coordinate oder non-coordinate plane. And we have not an information about perpendicular direction for this plane.
16
Interrelationship between three reciprocal lattice section, i.e. between three electron diffraction patterns of different zones. Schematic representation of the rotation method There are two way: rotation method and to have three patterns of different zones
17
POLYCRYSTAL-TYPE ELECTRON DIFFRACTION PATTERN Electron diffraction patterns from samples containing very large number of small randomly distributed crystals consist of continuous rings. The radii of the rings are inversely proportional to the interplanar spacings d hkl of a lattice planes of crystals. The formula r hkl d hkl = L, (r- radius of the ring) is used. In reciprocal lattice of a polycrystal is obtained by “spherical rotation” of a reciprocal lattice of a single crystal around a fixed 000 point. It forms a system of sphere placed one inside the other. A section through such a system of spheres produces a system of rings. Thus geometry of a polycrystalline pattern is a set of lengths H hkl, i.e. a set of interplanar distances d hkl of a crystal lattice.
18
The calculation for orthogonal lattices Simple division gives all d h00 = a/h, and, analogously, d 0k0 and d 00l. Further, using the scale, all d hk0 are found from (d hkl ) = (d hk0 ) + (d oko ), then by fixing first l = 1 (one setting of the movable scale) and finding all d hk1, and repeating this operation METHOD OF INVERSE SQUARES The quadratic form for orthorhombic crystals is: 1/d 2 hkl = h 2 /a 2 + k 2 /b 2 + l 2 /c 2. a – inverse scuares scale, b – method of finding d hk by using the mouvable scale
19
OBLIQUE TEXTURE ELECTRON DIFFRACTION PATTERNS Distribution of reciprocal lattice points Distribution of circular scattering of a plate texture along straight lines regions of the reciprocal lattice of a parallel to the texture axis and texture on coaxial cylinders. perpendicular to the face lying on the support.
20
FORMATION of the circular scattering regions (rings) in the reciprocal lattice of a texture, and relationship between their shape and the structure of the specimen Transition from a point to a ring (a), for an ideal texture without disorder (c) and having distribution function (e) (d,f) – corresponding diagrams for a real texture with some disorder.
21
PROJECTION NET AND THE CORRESPONDING SET OF R hk VALUES FIVE PLANE CRYSTALLOGRAPHIC SYSTEMS OF POINTS If there are layer lines on the pattern (for orthogonal lattice), for a zero layer line, R hk = H hk0. Thus having a set of values : R 2 hk = h 2 A 2 + k 2 B 2 + 2hkAB cos ` R = r (L ) -1 We can determined constant A,B, ` of The two-dimensional lattice.
22
DETERMINATION OF PERIOD c* and ANGLES The best formed plate textures are found in crystals with a layer lattice. For the reciprocal lattice of plate texture, the distribution of points along vertical strain lines, parallel to axis z, is characteristic. An important part is played by the modulus of vector H hkl. H hkl = x 2 + y 2 + z 2 =R 2 + z 2 Orthogonal unit cells
23
The doubling of the number of circular scattering regions in the reciprocal lattice of a texture and therefore the number of reflections on the ellipse of a pattern for a non-orthogonal unit cell.
24
CONCLUSION Mosaic single crystal, polycrystal, texture electron diffraction patterns provide valuable material for calculation the parameters of unit cell and then may be used for complete structural investigations of the crystal with unknown atomic structure.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.