Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Magnetar Primer Shriharsh P. Tendulkar California Institute of Technology S. R. Kulkarni P. B. Cameron.

Similar presentations


Presentation on theme: "The Magnetar Primer Shriharsh P. Tendulkar California Institute of Technology S. R. Kulkarni P. B. Cameron."— Presentation transcript:

1 The Magnetar Primer Shriharsh P. Tendulkar California Institute of Technology S. R. Kulkarni P. B. Cameron

2 The Neutron Star Household Pulsars (1967) Soft Gamma Repeaters (1979) Recycled Pulsars (MSPs etc) (1982) Isolated Neutron Stars (1992-1996) Anomalous X-ray Pulsars (1995) Compact Central Objects (around 2003) RRaTs (2006) 13/02/13S. Tendulkar, RRI 20132

3 Where does everything fit? 13/02/13S. Tendulkar, RRI 2013 SGRs AXPs INSs RRaTs Standard Issue Pulsars MSPs 3

4 Where does everything fit? 13/02/13S. Tendulkar, RRI 2013 Magnetic Field Powered Rotation Powered “Accretion” Powered 4

5 AXPs Anomalous X-ray Pulsars L X ~ 10 35-36 erg/s L rot ~10 32 erg/s No companions 13/02/13S. Tendulkar, RRI 2013 AXP 1E 2259+586 inside CTB 109 5

6 SGRs Soft Gamma Repeaters Short bursts: – 10 42 ergs/s Giant flares – 2-500 x 10 44 ergs – -29 mag! 13/02/13S. Tendulkar, RRI 20136

7 What is a magnetar? Highly magnetized NS – B ≈ 10 15 G – Young – Slowly rotating (P ≈ 5-10 s) 13/02/13S. Tendulkar, RRI 20137

8 What is a magnetar? 13/02/13S. Tendulkar, RRI 2013 1 2 3 4 Scientific American 2003 R. Duncan AXP SGR 8

9 Reasons for high B Spin down (1979 burst) – 8 sec in 10 4 years Energetics – Variability – No baryons Magnetic Containment 13/02/13S. Tendulkar, RRI 20139

10 Magnetar vs Pulsar Low B field ‘magnetar’ – SGR 0418+5729 – B~7 x 10 12 G Radio quiet, X-ray bright Unsteady pulses, ratty Pdot High B field pulsars – Few x 10 13 G Radio bright, X-ray quiet Steady pulses, decline 13/02/13S. Tendulkar, RRI 201310

11 Open Questions Formation – B-field  Dynamo vs Fossil – Progenitors: Mass, Spin, High B-field? – Age – Kinematics (~1000 km/s?) – SN energies Evolution – Lifetime 13/02/13S. Tendulkar, RRI 201311

12 Wider Relevance Neutron Star census – Millions might be floating around? – Star formation history etc. Fraction of short-hard GRBs (Ofek et al) – Rate of NS-NS mergers Energetic supernovae (Kasen & Bildsten 2010) 13/02/13S. Tendulkar, RRI 201312

13 Astrometry 13/02/13S. Tendulkar, RRI 201313

14 Why Astrometry? Kinematics – Comparison to other NS groups Ages – Model free Progenitors/Birth-places 13/02/13S. Tendulkar, RRI 2013 Challenges: – Can’t work in X-rays – Very few radio/IR counterparts 14

15 OIR Astrometry Hubble Space Telescope – Large FoV – Stable Distortion – Diffraction Limited Very precise astrometry! – ≈ 0.020 mas/yr over 7 years (Kallivayalil et al. 2013) 13/02/13S. Tendulkar, RRI 201315

16 Challenges in AO astrometry Small FoV (10-40”) Anisoplanatism – Changing PSF Variable Performance – Atmosphere dependent 13/02/13S. Tendulkar, RRI 201316

17 Optimal Astrometry Tip-tilt Anisoplanatism 13/02/13S. Tendulkar, RRI 2013 Sasiela 1994 Cameron et al. 2009 17

18 Optimal Astrometry Use covariance information Position: p i = W  d i d i = [x 0 -x i, x 1 -x i … y N -y i ] T for each epoch Choose weights W for lst. sq. optimization – Same weights for all epochs 13/02/13S. Tendulkar, RRI 201318

19 Performance 13/02/13S. Tendulkar, RRI 2013 Palomar 5-m telescope Cameron et al 2009 Measurement NoiseTip-tilt Anisoplanatism 19

20 SGR 1900+14 Giant flare: 27 th Aug 1998 d ≈ 12 kpc OIR counterpart (Testa et al. 2008) 13/02/13S. Tendulkar, RRI 2013 40 arcsec Cluster of Massive Stars (Vrba et al. 2000) Turnoff mass ≈ 17 M  (Davies et al. 2009) 20

21 SGR 1806-20 Giant flare: 27 th Dec 2004 d ≈ 15 kpc OIR counterpart (Israel et al. 2005) 13/02/13S. Tendulkar, RRI 2013 Cluster of Massive Stars (Fuchs et al. 1999) Turnoff mass ≈ 50 M  (Bibby et al. 2008) 21

22 AXP 4U 0142+61 Brightest AXP d ≈ 3 kpc Counterpart (Hulleman et al. 2000) OIR pulsations (Kern & Martin 2002) No association 13/02/13S. Tendulkar, RRI 201322

23 AXP 1E 2259+586 Center of CTB 109 d ≈ 3 kpc OIR counterpart (Hulleman et al. 2001) 13/02/13S. Tendulkar, RRI 201323 14 arcmin CTB 109

24 Results 13/02/13S. Tendulkar, RRI 201324

25 SGR 1900+14 13/02/13S. Tendulkar, RRI 2013 Galactic Rotation Expected Progenitor Velocity Measured Magnetar Velocity Galactic Plane 25

26 SGR 1900+14 13/02/13S. Tendulkar, RRI 2013 Age = 6 kyr T C = 0.9 kyr V = 130 km/s 26

27 SGR 1806-20 13/02/13S. Tendulkar, RRI 2013 Towards Galactic Center V = 350 km/s 27

28 SGR 1806-20 13/02/13S. Tendulkar, RRI 2013 Tendulkar et al (2012) Age = 650 ± 300 yr T C = 160 yr 28

29 SGR 1806-20 13/02/13S. Tendulkar, RRI 201329

30 AXP 1E 2259+586 13/02/13S. Tendulkar, RRI 2013 V = 160 km/s Opposite to Galactic Center 30

31 AXP 1E 2259+586 13/02/13S. Tendulkar, RRI 2013 Current Center of CTB 109 Age = 14 kyr (Sasaki et al. 2013) Center of explosion DENSE MOLECULAR CLOUD Tendulkar et al. in prep 31

32 AXP 4U 0142+61 13/02/13S. Tendulkar, RRI 2013 V = 100 km/s 32

33 AXP 4U 0142+61 13/02/13S. Tendulkar, RRI 2013 Hunt for an association Tendulkar et al. in prep 33

34 Magnetar Kinematics MagnetarV tan (km/s)AssociationMethodReference AXP 1E 1810−197212±35 –VLBIHelfand et al (2007) AXP 1E 1547.0-5408280±120SNR G327.4- 0.13 VLBIDeller et al (2012) SGR 1900+14130±30ClusterLGSAOTendulkar et al (2012) SGR 1806-20350±100ClusterLGSAOTendulkar et al (2012) AXP 1E 2259+586157±17SNR CTB 109LGSAOTendulkar et al (subm) AXP 4U 0142+61102±26 –LGSAOTendulkar et al (subm) 13/02/13S. Tendulkar, RRI 201334

35 Magnetar Kinematics 13/02/13S. Tendulkar, RRI 2013 Tendulkar et al. in prep Matches the velocity distribution of normal pulsars (Hobbs 2005) 35

36 The NuSTAR Magnetar 13/02/13S. Tendulkar, RRI 201336

37 Timeline 24 th April ‘13  SWIFT XRT brightening – 0.11 cts/s (1.3 x 10 35 ergs/s) 13/02/13S. Tendulkar, RRI 201337

38 Timeline 24 th April ‘13  SWIFT XRT brightening – 0.11 cts/s (1.3 x 10 35 ergs/s) 26 th April ‘13  SWIFT BAT flare – 32 ms, 2500 cts/s 13/02/13S. Tendulkar, RRI 201338

39 Timeline 26 th April ‘13  SWIFT BAT flare – 32 ms, 2500 cts/s 26 th April ‘13  NuSTAR ToO 6 hr obs – 3.76 sec period 13/02/13S. Tendulkar, RRI 201339

40 Timeline 26 th April ‘13  NuSTAR ToO 6 hr obs – 3.76 sec period 29 th April ‘13  Chandra position – 3” away from GC (0.1 pc) 13/02/13S. Tendulkar, RRI 201340

41 Timeline 29 th April ‘13  Chandra position – 3” away from GC (0.1 pc) 4 th May ‘13  NuSTAR – 7 hrs – Pdot = 6 x 10 -12 s/s – B ~ 1.5 x 10 14 G 13/02/13S. Tendulkar, RRI 201341

42 Timeline 4 th May ‘13  NuSTAR – 7 hrs – Pdot = 6 x 10 -12 s/s – B ~ 1.5 x 10 14 G 6 th May ’13  Paper to ApJL – Kaya Mori et al. 13/02/13S. Tendulkar, RRI 201342

43 Implications Very similar to other magnetars Probably born in O/WR stars – 6 Myr old  40 M  More evidence for “transient” magnetars – Link to high-B pulsars 13/02/13S. Tendulkar, RRI 201343

44 Astrometry 13/02/13S. Tendulkar, RRI 201344

45 Galactic Rotation 13/02/13S. Tendulkar, RRI 2013 No quasars – Absolute astrometry is challenging Model galactic rotation – Along line of sight – SDSS stellar density – Estimate bulk motion Progenitor Velocity 45


Download ppt "The Magnetar Primer Shriharsh P. Tendulkar California Institute of Technology S. R. Kulkarni P. B. Cameron."

Similar presentations


Ads by Google