Download presentation
Presentation is loading. Please wait.
Published byMariana Crosley Modified over 10 years ago
1
Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes. Olivier Geoffroy, Pier Siebesma (KNMI), Jean-Louis Brenguier, Frederic Burnet (Météo-France) I.Problematic, methodology and measurements II.Cloud spectrum: results III.Rain spectrum: results IV.Sensitivity tests in shallow cumulus simulations. V.Z-R relationship
2
To derive other moments from M 0 & M 3, M 0 & M 3 it is necessary to make an assumption about the shape of the CDSD and the RDSD Cloud Sedim: Radar reflectivity: Interaction with radiative transfert: τ~M2τ~M2 Rain Sedim Problematic Rain evap: ~M 1 & M 2 autoconversion: Radar reflectivity: N c (M 0 ) & q c (~M 3 ), N r (M 0 ) & q r (~M 3 ) Microphysical processes / variables Cond/evap: Bulk prognostics variables = ~SM 1 =M 6
3
Generalized Gamma Lognormal Are Lognormal, Gamma, Gamma in mass suitable ? With which value of the width parameter σ g or ν? Common distributions ν =1 ν =6 ν =11 α=1 Size distri = Gamma α=3 Mass distri = Gamma = Marshall Palmer σ g =? ν =? 3 parameters M 0, M 3 = prognostics 4 parameters M 0, M 3 = prognostics α =1 or 3
4
Observationnal data Data = particule counters in situ Measurements at 1Hz resolution (~ 100 m). -Sc and Cu spectra - Measurements at each levels in the BL - ~100 m resolution - Complete hydrometeors spectra : 1 µm to 10 mm flight plan RICO : 7 cases of Cu ACE-2 : 8 cases of Sc Fast FSSP : ~2 ~50 µm OAP-260-X : 5 635 µm 2DP-200X: 245 12645 µm Fast FSSP : ~2 ~40 µm OAP-200-X : 35 310 µm Instruments campaign
5
CloudRain D0 D0 Methodology For each spectrum: D 0 = 75 µm Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra
6
q c, N c CloudRain D0 D0 Methodology For each spectrum: D 0 = 75 µm Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra σ g Lognormal M1M1
7
q c, N c CloudRain D0 D0 Methodology For each spectrum: D 0 = 75 µm Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra σ g Lognormal M1M1 M2M2 M5M5 M6M6 σ g
8
ν1ν1 q c, N c CloudRain D0 D0 Methodology For each spectrum: D 0 = 75 µm Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra σ g Gamma Lognormal M1M1 M2M2 M5M5 M6M6 ν1ν1 σ g ν1ν1 ν1ν1
9
ν1ν1 q c, N c CloudRain Methodology For each spectrum: D 0 = 75 µm Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra σ g Gamma in mass Gamma Lognormal M1M1 M2M2 M5M5 M6M6 ν1ν1 σ g ν1ν1 ν1ν1 ν3ν3 ν3ν3 ν3ν3 ν3ν3 D0 D0
10
ν1ν1 q c, N c CloudRain D0 D0 Methodology For each spectrum: D 0 = 75 µm Rain: ACE-2 : not used RICO : 2860 spectra Cloud: ACE-2 : 19000 spectra RICO : 8500 spectra σ g Gamma in mass Gamma Lognormal M1M1 M2M2 M5M5 M6M6 ν1ν1 σ g ν1ν1 ν1ν1 ν3ν3 ν3ν3 ν3ν3 ν3ν3 M1M1 M2M2 M4M4 M6M6 q r, N r ν1ν1 σ g ν1ν1 ν1ν1 ν1ν1 ν3ν3 ν3ν3 ν3ν3 ν3ν3
11
Plan I.Methodology and measurements II.Cloud spectrum: results III.Rain spectrum: results IV.Sensitivity tests in shallow cumulus simulations.
12
Cloud, width parameter=f(M 1 ) Grey points = value of σ g that best represent M 1 for each spectrum Circles = value that minimize the standard deviation of the absolute errors M measure -M analytic in each moment class Triangles = value that minimize the standard deviation of the relative errors M measure / M analytic in each moment class
13
Cloud, width parameter=f(M p ) Circles = value that minimize the standard deviation of the absolute errors M measure -M analytic in each moment class Triangles = value that minimize the standard deviation of the relative errors M measure / M analytic in each moment class Value of the width parameter: Lognormal: Gamma: Gamma in mass:
14
Lognormal: Gamma: Gamma in mass: Cloud, width parameter=f(q c ) Parameterization formulation : Circles = value that minimize the standard deviation of the absolute errors M measure -M analytic in each LWC class Triangles = value that minimize the standard deviation of the relative errors M measure / M analytic in each LWC class
15
Gamma in mass: Gamma: Lognormal: Cloud, relative error=f(M p ) Value of the width parameter:
16
Cloud, relative error = f(q c ) Lognormal: Gamma: Gamma in mass: Parameterizations:
17
Gamma in mass: Gamma: Lognormal: Cloud, relative error=f(M p ) Value of the width parameter:
18
Cloud, relative error = f(q c ) Lognormal: Gamma: Gamma in mass: Parameterizations:
19
Plan I.Methodology and measurements II.Cloud spectrum: results III.Rain spectrum: results IV.Sensitivity tests in shallow cumulus simulations.
20
Rain: Gamma, ν=f(D v ) Seifert (2008) ν=f(D v ) Measurements vs Seifert (2008) results: - Some distributions larger than Marshall Palmer at low D v - Less narrow distributions at high D v 1 16 13 10 7 4 Differences: - Measurements at every levels in cloud region - Seifert (2008): distribution at the surface, no condensation Marshall and Palmer (1948) Stevens and Seifert (2008) ν=f(D v )
21
Rain : free parameter=f(q r ) Dependance in function of qr Better results Lognormal: Gamma: Gamma in mass: Parameterizations : Circles = value that minimize the standard deviation of the absolute errors M measure -M analytic in each RWC class Triangles = value that minimize the standard deviation of the relative errors M measure / M analytic in each RWC class
22
Rain : relative errors Dependance in function of qr Better results Lognormal: Gamma: Gamma in mass: Parameterizations: Marshall Palmer
23
Plan I.Problematic, methodology and measurements II.Cloud spectrum: results III.Rain spectrum: results IV.Sensitivity tests in shallow cumulus simulations. V.Z-R relationship
24
Sensivity test: RICO case LWP (g m -2 ) RWP (g m -2 ) R surface (W m -2 ) Ensemble of models DALES simulations Models of the intercomparison exercise (black) ν 3c =1, ν r =1 ν 3c =f(lwc), ν r =f(lwc)
25
Deeper BL based on RICO θlθl qtqt -0.6 K + 2.5 g kg -1 + 0.5 g kg -1 Colder Moister -0.6 K Averaged profiles restart
26
Sensitivity to ν 3c ν 3c 1f(qc) LWP (g m -2 )14.817.1 RWP (g m -2 )8.94.3 υ c =1 A=8 υ c =2 A=3.75 υ c =3 A= 2.7 Autoconversion rate : =A 3 10 -8 (Seifert and Beheng, 2006)
27
Sensitivity to ν r νrνr 1 f(q c ) ( ) ν SS08 ( ) 611 LWP (g m -2 )15.014.816.018.319.0 RWP (g m -2 )7.68.912.520.323.1 CB CT Processes depending on ν r : rain sedim, evap, self-collection and break-up width
28
Plan I.Problematic, methodology and measurements II.Cloud spectrum: results III.Rain spectrum: results IV.Sensitivity tests in shallow cumulus simulations. V.Z-R relationship
29
Z-R Snodgrass (2009) Z=68 R 2
30
Summary -Development of a parameterization of the width parameter of the cloud droplet spectra as a function of the LWC. -Development of a parameterization of the width parameter of the rain drop spectra as a function of the RWC Lognormal: Gamma: Gamma in mass: Lognormal: Gamma:
31
Z-R Snodgrass: red TRMM: green Only 2dp
32
Z-R
33
Sensitivity to ν r νrνr 1 f(q c ) ( ) ν SS08 ( ) 611 LWP (g m -2 )15.014.816.018.319.0 RWP (g m -2 )7.68.912.520.323.1 Without rain evaporation - Sensivity to ν r in sedim process similar results as Stevens and Seifert (2008) - Main sensitivity : sedimentation process. ν r in sedim RWP ν r in sedim V qr evap LWP RWP ν r in evap evap LWP νrνr 1f(q c ) ν SS0 8 611 LWP (g m -2 )12.4/13.313.212.8 RWP (g m -2 )9.5/15.119.221.9 CB CT Processes depending on ν r : rain sedim, evap, self-collection and break-up width Flux precip
34
Observational data ACE-2 : not used RICO : 2860 spectra ACE-2 : 19000 spectra RICO : 8500 spectra Scatterplot all q c -N c values Scatterplot all q r -N r values Large number of spectra typical of Sc and Cu (RF07, RF08, RF11, RF13)
35
Measured spectra ACE-2 : 8 cases of Sc Fast FSSP : ~2 ~50 µm, 266 bins OAP-260-X : 5 635 µm, 63 bins, Δ bin ~ 10 µm 2DP-200X: 45 12645 µm, 63 bins, Δ bin ~ 200 µm Fast FSSP : ~2 ~40 µm, 266 bins OAP-200-X : 15 310 µm, 15 bins, Δ bin ~ 20 µm RICO : 7 cases of Cu - Complete hydrometeors spectra : 1 µm to 10 mm
36
Parameterization formulation : Cloud, absolute error=f(M p ) Normalization: M 1 : 100 µm cm -3 M 2 :1000 µm 2 cm -3 M 5 :10 7 µm 5 cm -3 M 6 :10 9 µm 6 cm -3 σ: 1 µm
37
Cloud, absolute error =f(q c ) Parameterization formulation : Normalization: M 1 : 100 µm cm -3 M 2 :1000 µm 2 cm -3 M 5 :10 7 µm 5 cm -3 M 6 :10 9 µm 6 cm -3 σ: 1 µm
38
ACE 2 - RICO
39
Only ACE 2
41
Only RICO
43
Rain sedimentation Terminal velocities parameterization (Stevens and Seifert, 2008) : V qr > V Nr V=f(D v ), ν r =1V=f(D v ), ν r =6V=f(D v ), ν r =11 V qr V Nr V qr -V Nr V qr V Nr V qr -V Nr V qr V Nr V qr -V Nr broader : ν r V qr,V Nr distribution V qr -V Nr Size sorting
44
Rain sedimentation (averaged profiles) ν width V qr R surf dRWP /dt RWP ν width RWP evap LWP (positive feedback) sc / b-up : low impact Evap : low impact µ evap but larger droplets R surf Sedim LWP RWP (peaks) RWP, R surf (large drops)
45
Rain evaporation C evap = 1 D v = constant during evaporation (happens if preence of little drops) C evap = 0 N r = constant during evaporation (happens if only large drops) Rain mixing ratio r r Rain concentration N r C evap = 0.7 – 1 (A. Seifert personal com)
46
C evap sensitivity C evap = 0.7 – 1 (A. Seifert personal com) C evap =1 C evap =0.7 C evap =0 ~2 mm j -1 C evap = 1 D v = constant, N r C evap = 0 N r = constant, D v evap LWP and RWP
47
Autoconversion, sensitivity = 8 (υ c =1) = 3.75 (υ c =2) = 2.7 (υ c =3) k cc = 4.44 E9 m 3 kg -2 s -1 10.44 E9 m 3 kg-2 s -1 Autoconversion rate : (Cloud droplet width) Collection efficiency ~2 mm j -1 Sensitivity to the coefficients υ c (cloud droplet spectra width)
48
The rain drop distribution Gamma law : 1 free parameter : ν r Gamma law (r r = 0.2 g kg -1, N r = 10000 m -3 ) ν r = 1 ν r =6 ν r =11 with : D v ν r ν Narrower distribution Seifert (2008) ν ν=f(D v ) 1 16 13 10 7 4 1-D bin model spectra : = Marshall Palmer
49
ν r sensivity ν r =1 ν r =f(Dv) ν r =6 ν r =11 ~2 mm j -1 ν Width Size sorting V qr R surf dRWP /dt RWP ν RWP evap LWP Impact due to sedimention (acrr ~ cste)
50
Precipitating flights : RF07, RF08, RF12 (low vlues and low number of points, 0.10 g m-3), RF13, RF11
51
Explicit (bin) scheme 50 – 100 variables High numerical cost Bulk scheme : only 2 bins cloud rain D 0 ~ 40 - 100 µm 1 - 5 variables Numerical cost Parameterisations of the microphysical processes D ~ 40 µm n(D) ~ 1 µm~ 8 mm D n(D) ~ 1 µm~ 8 mm Warm cloud Bulk parameterisation
52
Sensivity test: RICO case LWP (g m -2 ) RWP (g m -2 ) P surface (W m -2 ) DALES simulations
53
Rain: Gamma, ν=f(D v ) Seifert (2008) ν=f(D v ) Measurements vs Seifert (2008) results: - Some distributions larger than Marshall Palmer at low D v - Less narrow distributions at high D v 1 16 13 10 7 4 Differences: - Measurements at every levels in cloud region - Seifert (2008): distribution at the surface, no condensation Marshall and Palmer (1948) Stevens and Seifert (2008) ν=f(D v )
54
Sensitivity to ν r νrνr 1 f(q c ) ( ) ν SS08 ( ) 611 LWP (g m -2 )15.014.816.018.319.0 RWP (g m -2 )7.68.912.520.323.1 CB CT Processes depending on ν r : rain sedim, evap, self-collection and break-up width
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.