Presentation is loading. Please wait.

Presentation is loading. Please wait.

Using Microsoft Excel to Visualize Climate Data. “Data Mining” Computers have allowed scientists to collect, save, and share vast amounts of data. New.

Similar presentations


Presentation on theme: "Using Microsoft Excel to Visualize Climate Data. “Data Mining” Computers have allowed scientists to collect, save, and share vast amounts of data. New."— Presentation transcript:

1 Using Microsoft Excel to Visualize Climate Data

2 “Data Mining” Computers have allowed scientists to collect, save, and share vast amounts of data. New fields such as “data mining” and “bioinformatics” use data collected by other scientists to conduct research and find patterns.

3 Communicating information with graphs Mean Backgroun d Site 2 Mean Backgroun d Site 3 Mean Backgroun d Site 4 Mean Backgroun d Site 5 Average Backgroun dBlack PointMax Average Max White Point 3781.9175229.6396274.8065541.8064962.95024715347131224539971179711698424376.830471 4848.6394028.1393816.7223799.6114016.45563816221203183711513135841306318423.423029 33512077197623792669.4253614752252871491227032219015968.819961 6546.8065567.4176166.8896508.3896066.34465763222941382618159202261518917938.822424 5891.8064940.2224830.8066030.2785606.46685326347582943830445392992597631983.239979 5089.8065003.6945155.9724423.9445126.93324871403442679919273293844803932767.840960 4663.3614611.05643597781.6395252.06124989381193407536508131264301432968.441211 5693.1116916.7787157.1395766.756188.3395879190272444718560179911859319723.624655 8644.94410626.5287788.2789108.3618703.2834826824792254162413729549199312476530956 9171.3338263.5288622.41710346.0569217.43348757235352583028531222142120124262.230328 90027064.4446879.16715243.1119306.22788841271212854320049279862380525500.831876 6738.257552.9726457.3618695.9727114.21666759230263416628179247752265626560.433201 5013.0283043.5564028.253085.8063879.20023685114066387111266309115889363.211704 2846.3892813.8062656.3613207.8332933.1392786596998196737 7508.3333 339385 5784.91714809.3617433.759723.9448888.41668444356531916226461204212247724834.831044 7133.5286776.8616271.8337619.3336861.016665181524523251185851902723784 3803.7063749.5454271.9514116.073927.2446373110444181901190910640780111796.814746 3396.3153428.4414509.2524542.7063841.60723650774164928472771861117306.89134 1616.9651794.7061587.9091725.1051662.1791579474248194454444539544482.85604 1579.1542002.8882012.2241629.511754.26841667429130702658233730893861 2109.722274.0352379.7132205.3362200.38042090460447263959369946604329.65412 5883.287715.5036587.286077.866928.48526582215252225420309145714257324246.430308 6199.0917404.7917043.3917814.1187204.994668451665419796153831641217061.2521327 8067.84511702.67311003.8369127.8739545.498290681408217124171501690616315.520394 14475.84512849.93611730.72713569.482 13373.343 412705306532435528824284282516627485.234357 16852.62712499.07314901.36412021.436 13861.463 613168222043335030605 28719.666 6735900 4849.2274177.6365467.8094036.0364850.827460825915137852000521179186711991124889 3733.9184606.9915587.3093704.24438.54217203921608413320143842241317318.621648 4429.2454965.8274554.0455439.7364745.02164508138651205510084129241407112599.815750 6631.6185429.3914839.3645191.1185561.6072528415362131681154010987116781254715684 7845.96909.8558500.12710410.6368103.3308769839774305642422430048210752913736421 8868.4188822.9646337.1557300.5097761.320273731837217871166121995618202.7522753 4052.9093884.5643514.7553192.1363614.9364343497941104410425846585989665.212082 3763.2913825.9733589.9453621.3363746.2326355995921252311663112541386011778.414723 3863.6274692.3824573.4094047.6914444.60724222105177827615174047974.759968 4021.8095794.6824048.3183276.5094219.66940091281114373172359398144231364817060 3424.2365680.0453922.5093359.0093946.1873749215862194519851189551752219971.824965 8730.66492.6367153.46687.1647154.26679745909451604310533393276883905148814 6055.0187955.65900.1737772.6646860.38566517272701674927374140072135026688 8812.83610822.9368928.64510622.355 10324.787 29809217732267726675215001937922400.828001 11680.07312677.80911022.95510488.373 11210.407 410650273383534426491238632477627562.434453 10051.74513873.10910653.72716437.527 11772.105 211183263133651365535527693616343458.654323 5950.0364236.8096621.6274460.2915574.4585296125129765131721057011504.7514381 4584.63602.2915342.3274851.4644641.7292441010364107648105702978198816.211020 4174.5364287.0554155.5734608.7914169.4364396195551270210628134981716112708.815886 3862.5273911.64648.3456101.4644570.3618434293381080111330110321075110650.413313 9013.211353.4559975.88212557.4 11001.658 410452360663156430605259022309529446.436808 8225.0278867.3558872.8558086.5278697.92568263191341677217153133751117315521.419402 8272.8456358.3647618.6918468.3737495.0746712027666341092333630646240982797134964 18002.30915536.20919229.93615174.391 18570.321 817642459613633131673553535212844289.255362 6738.8367886.1096792.6917181.3917513.2297138283963192023805250142379726586.433233 9333.7368516.2828984.5559073.5829490.16749016269763124932723268393248930055.237569 12181.27315009.00912447.0187283.691 11383.054 610814329522989231543267782173628580.235725 15933.82712096.51813258.91813960.082 13810.972 613120279462670037626 30757.333 3338447 16478.19119540.21813783.46419264.809 17114.178 216258331413325832076312742911331772.439716 17140.70918915.16419580.35518534.66417799.4531690934319422324377639801389123980849760 10123.96418217.04516346.82713513.40914364.59813646333313769737947365893823836760.445951 15834.416686.74516408.19116751.945 17346.110 816479297843716830698290102608930549.838187 7969.9648425.3649947.39113785.427 10313.452 897982979621477359693550430686.538358 11703.76414932.84513077.63611725.512413.77811793352373527854225501154938444847.856060 8753.9189575.36410482.7647960.7648976.13668527172892747438314235983210927756.834696 8197.2557648.3457924.8277861.3188377.50367959309662025420979168791977821771.227214 12329.2368003.54511621.84516253.227 12407.505 211787331733213639339425354035337507.246884 10608.0559072.8098947.8279770.4279600.25469120243693268431490266992329927708.234635 A small dataset A graph representing the averages of the values that the scientist wants you to know about Which is easier to understand?

4 Today we will use some publicly available data about weather and climate Sources for Climate Data: Climate Reanalyzer cci- reanalyzer.org (includes many public datasets) Rutgers University Global Snow Lab Global Historical Climate Network U.S. Historical Climatology Network Goddard Institute for Space Studies Scripps CO 2 Program …and many more!

5 Today we will use some publicly available data about weather and climate One example of a very complex data visualization. Data can be beautiful, too!

6 But there is public data for many different topics, and even online tools to help you explore Topics Infectious Disease Outbreaks World Economies Broadband performance Life Expectancy Standardized Test Performance Tools Google Public Data Explorer NorthWest Public Health Observatory National Center for Education Statistics

7 “47.3% of all statistics are made up on the spot.” -Steven Wright

8 Graphs in the media: People will use graphs to mislead you These plots show the exact same information, what makes them appear different? Do you come away with the same impression from both graphs? Why or why not?

9 People will use graphs to mislead you These plots show the exact same information, what makes them appear different? Do you come away with the same impression from both graphs? Why or why not?

10 Visual effects can be misleading These plots show the exact same information, what makes them appear different? Do you come away with the same impression from both graphs? Why or why not?

11 Being a “savvy consumer” of data: Questions to ask of graphs you see in daily life Who is telling me this? Could they benefit from me interpreting the data a certain way? Where did the numbers come from? – Often companies will pay for research studies. These researchers may be pressured to produce data that is good for the company’s “bottom line.” Did they use an appropriate graph to display the data? – Is there information they are leaving out by not using the appropriate graph? – Is there other information they aren’t telling you?

12 Visual effects can be misleading It can be tempting to use “cool” visual effects in your graphs, but often these impair the readers’ ability to understand the plot.

13 People have difficulty distinguishing and remembering >8 colors in one graph. The colors in this graph do not actually mean anything about the data. In trying to make the graph colorful, the creator has caused confusion. This can also be misleading if people attempt to attach meaning to the different colors.


Download ppt "Using Microsoft Excel to Visualize Climate Data. “Data Mining” Computers have allowed scientists to collect, save, and share vast amounts of data. New."

Similar presentations


Ads by Google