Download presentation
Published byJenna Cramp Modified over 9 years ago
1
Two-port networks Review of one ports Various two-port descriptions
Terminated nonlinear two-ports Impedance and admittance matrices of two-ports Other two-port parameter matrices The hybrid matrices The transmission matrices
2
1-port 2-port 2-port 2-port 1-port
3
Thevenin’s Equivalent Circuit
Norton’s Equivalent Circuit
4
N NO For LTI network In frequency domain No independent sources
5
Nonlinear one port
6
Bias point v ( V ) i (mA) t Q I 0.5 D 0.75 0.55 0.6 0.65 0.7 1 1.5 2
1 1.5 2 2.5 3 3.5 v D ( V ) i (mA) t Bias point Q I
7
For small
8
For DC bias For DC bias + small signal From Taylor’s series expansion
9
Where
11
Slope at Q point = Bias point i (mA) I t Q V v ( V ) t D D D 0.5 D 3.5
2.5 Slope at Q point = 2 Bias point I D 1.5 t Q 1 0.5 V D v ( V ) 0.5 0.75 D 0.55 0.6 0.65 0.7 t
12
Example If find
13
Two-port networks LTI one ports Fig. 1 Input impedance
Input admittance
14
Two-port networks Example 1
Determine the input impedance of the circuit in Fig. 2 Fig. 2
15
Determine the output impedance of the circuit in Fig. 3
Example 2 Determine the output impedance of the circuit in Fig. 3 Fig. 3
16
Two-port networks Circuits can be considered by theirs terminal variables Voltages and currents are terminal’s variables Complex circuit can be analyzed more easily. There are many kinds of two port parameters. Fig. 4 A two port network
17
Common-Emitter (CE) Fixed-Bias Configuration
18
Removing DC effects of VCC and Capacitors
19
Small signal equivalent circuit
20
re equivalent model Hybrid equivalent model
21
Various two-port descriptions
Port current Port voltage or Or hybrid
22
Two-port networks The Y parameter
The admittance or Y parameter of a two port network is defined by or in scalar form
23
The Y parameter The Y parameters can found from
These parameters are call short-circuited admittance parameters
24
The Y parameter Example 3
Determine the admittance parameters from the circuit in Fig 5. Fig 5.
25
The Y parameter Example 4
Compute the y-parameter of the circuit in Fig.6 Fig.6
26
Y parameter analysis of terminated two-port
Fig. 9 Terminated two-port Y-parameter equations
27
Y parameter analysis of terminated two-port
From Crammer’s rules The input admittance Yin and
28
Y parameter analysis of terminated two-port
Gain: Fig 10 Terminated two-port Y-parameter model
29
Two-port networks The Z parameter
The impedance or Z parameter of a two port network is defined by or in scalar form
30
The Z parameter The Z parameters can be found from
These parameters are call open circuit impedance parameters
31
The Z parameter Example 6
Determine the impedance parameters from the circuit in Fig 11 Fig 11. In frequency domain
32
The Y parameter Example 7
Compute the z-parameter of the circuit in Fig.12 Fig.12
33
The Z parameter
34
Z parameter analysis of terminated two-port
Fig. 14 Terminated two-port Z-parameter equations
35
Z parameter analysis of terminated two-port
From Crammer’s rules The input impedance Zin and
36
Z parameter analysis of terminated two-port
Gain: Fig 15 Terminated two-port Z-parameter model
37
Z parameter analysis of terminated two-port
Example 9 The circuit in Fig 16 is a two-stage transistor amplifier. The Z-parameters for each stage are Fig 16 Determine a) The input impedance and b) The overall voltage gain c) Check the matching of the load and output impedance
38
Z parameter analysis of terminated two-port
Solution
39
Z parameter analysis of terminated two-port
0.902 225.6
40
Z parameter analysis of terminated two-port
The overall voltage gain Out put impedance The detail is left to the student to show that
41
Z parameter analysis of terminated two-port
Therefore the load is closely matched to the output impedance
42
The h-parameter (Hybrid parameter)
H-parameter is the combination of Z and Y parameter defined by or in scalar form H-parameter is commonly used in transistor modeling.
43
The h-parameter The h parameters can found from
44
The h-parameter Fig 17 Hybrid parameter model
45
The h-parameter Example 10
Determine the h-parameter of the two-port circuit shown in Fig. 18 Fig. 18
46
The h-parameter Example 10
Find the h-parameter of the circuit in Fig. 19 assuming L1=L2=M=1H Fig. 19 In frequency domain
47
The h-parameter In matrix form
48
The h-parameter With L1=L2=M=1 H
49
The inverse hybrid parameter (g- parameter)
g-parameter is defined by or in scalar form g-parameter is an alternative form of hybrid representation.
50
The g parameters can found from
51
Inverse hybrid parameter model
52
Conversion of Two-port parameters
Two port parameters can be converted to any form as follows From And and
53
where
54
Conversion of Two-port parameters
From y to h
55
Conversion of Two-port parameters
Hence
56
Conversion of Two-port parameters
It can be shown that for the terminated two-port with h-parameter the following equations can be derived and
57
Transmission parameter
The t-parameter or transmission parameters are used in power system and it is called ABCD parameter. The transmission parameter is defined by or This means that the power flows into the input port and flow out to the load from the output port. t-parameter can be calculated from Open or short circuit at the output port
58
Transmission parameter
Example 11 Determine the t-parameter of the circuit shown in Fig 20. Fig 20
59
Transmission parameter
One of the most importance characteristics of the two-port circuit with t-parameter is to determine the overall cascade parameter. Therefore
61
Inverse Transmission parameter
62
Interconnection of two-port network
Two port networks can be connected in series parallel or cascaded Series and parallel of two-port have 4 configurations Series input-series output (Z-parameter) Series input-parallel output (h-parameter) Parallel in put-series output (g or h-1-parameter) Parallel input-parallel output (Y-parameter) With proper choice of parameters the combined parameters can be added together.
63
Interconnection of two-port network
64
Example Bridge-T network
65
N1 // N2
66
For network N2 For network N1
67
Y-parameters of the bridge-t network are
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.