Download presentation
1
The University of Tokyo
Microscopic origin and universality classes of the three-body parameter The University of Tokyo Pascal Naidon Shimpei Endo Masahito Ueda
2
3 particles (bosons or distinguishable) with resonant two-body interactions
single-channel two-body interaction no three-body interaction
3
The Efimov 3-body parameter
Zero-range condition with πββ β 1 π
2 Efimov attraction R x π
2 = ( π₯ 2 + π¦ 2 + π§ 2 ) Hyperradius The Efimov effect (1970) y z Parameters describing particles at low energy Scattering length a (2-body parameter) 1/π β - π
2 πΈ 1/π π Three-body parameter trimer Ξ β1 3-body parameter dimer
4
The Efimov 3-body parameter
Zero-range condition with πββ β 1 π
2 Efimov attraction R x π
2 = ( π₯ 2 + π¦ 2 + π§ 2 ) Hyperradius The Efimov effect (1970) y z Parameters describing particles at low energy Scattering length a (2-body parameter) 1/π β πΈ 1/π - π
2 22.72 π Three-body parameter trimer dimer Ξ β1 3-body parameter
5
Universality for atoms
triplet scatt. length π [ π 0 ] π vdW [ π 0 ] 4He 7Li 6Li 39K 23Na 87Rb 85Rb 133Cs Microscopic determination? no universality of the scattering length r short-range details β 1 π 6 van der Waals Two-body potential Effective three-body potential Hyperradius R short-range details β 1 π
2 Efimov π β [ π 0 ] π β ββ10 π π£ππ π vdW [ π 0 ] universality of the 3-body parameter
6
Three-body with van der Waals interactions
Phys. Rev. Lett (2012) J. Wang, J. DβIncao, B. Esry, C. Greene Lennard-Jones potentials supporting n = 1, 2, 3, s-wave bound states π β ββ11 π π£ππ β 1 π
2 Efimov Hyperradius R Three-body repulsion at π
β2 π π£ππ
7
Interpretation: two-body correlation
π π =sin (ππ β πΏ π ) Asymptotic behaviour π π π(π) Strong depletion Interatomic separation r Resonance πββ π π π(π) π 0 β π π£ππ βΌ π π = 0 β π π 2 β π 0 π 2 ππ
8
Interpretation: two-body correlation
Kinetic energy cost due to deformation Excluded configurations induced deformation squeezed equilateral Excluded configurations deformation β©πΌβͺ Efimov elongated π 0
9
Confirmation 1: pair correlation model
FModel = FEfimov x j(r12) j(r23) j(r31) (hyperangular wave function) (product of pair correlations) 3-body potential π π
= π π
π cos π ππΌ πΞ¦ ππ
2 Hyperradius R [ π 0 ] Energy E [ π 0 β2 ] Pair model (for Lennard-Jones two-body interactions) Exact Efimov attraction
10
Confirmation 2: separable model
Reproduces the low-energy 2-body physics Scattering length Effective range Last bound state β¦. π=π π β©π| Parameterised to reproduce exactly the two-body correlation at zero energy. π π =1βπ 0 β π 0 π β π 0 (π) sin ππ ππ 1/π β π=4π 1 π β 2 π 0 β π π 2 ππ β1 - π
2
11
Confirmation 2: separable model
π β π π£ππ π β =β10.86(1) π π£ππ n π=π π β©π| Parameterised to reproduce exactly the two-body correlation at zero energy. Hyperradius R Energy Exact Pair model Separable model Hyperradius R Integrated probability
12
Confirmation 2: separable model
π=π π β©π| Parameterised to reproduce exactly the two-body correlation at zero energy. Other potentials Potential π β πΏ Yukawa -5.73 0.414 Exponential -10.7 0.216 Gaussian -4.27 0.486 Morse ( π 0 =1) -12.3 0.180 Morse ( π 0 =2) -16.4 0.131 PΓΆschl-Teller (πΌ=1) -6.02 0.367 at most 10% deviation -6.55 -11.0 -4.47 -12.6 -16.3 -6.23 0.204 -0.366 0.472 0.173 0.128 0.350 Separable model Exact calculations S. Moszkowski, S. Fleck, A. Krikeb, L. TheuΓΏl, J.-M.Richard, and K. Varga, Phys. Rev. A 62 , (2000).
13
Summary universal two-body correlation βΌ π π effective range
three-body deformation three-body repulsion three-body parameter βΌ π π effective range
14
Two-body correlation universality classes
ββ 1 π π (π>3) Power-law tails Faster than Power-law tails Step function correlation limit Universal correlation π 0 π =Ξ πβ1 πβ2 π/ π π 1/2 π½ 1/(πβ2) (2 π/ π π β(πβ2)/2 ) Probability density Van der Waals 0.0 1.0 2.0 3.0 4.0 Interparticle distance ( π π£ππ )
15
Separable model 3-body parameter in units of the two-body effective range (= size of two-body correlation) Nuclear physics Atomic physics π
=β π π 2 β1 π
=β π π 2 β1 Binding wave number at unitarity π
=β π π 2 β1 ? Number of two-body bound states
16
Summary The 3-body parameter is (mostly) determined by the low-energy 2-body correlation. Reason: 2-body correlation induces a deformation of the 3-body system. Consequences: the 3-body parameter is on the order of the effective range. has different universal values for distinct classes of interaction P. Naidon, S. Endo, M. Ueda, PRA 90, (2014) P. Naidon, S. Endo, M. Ueda, PRL 112, (2014)
17
Obrigado pela sua attenção!
18
Separable model π=π π β©π|
Parameterised to reproduce exactly the two-body correlation at zero energy. β¦ π β π π£ππ
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.