Presentation is loading. Please wait.

Presentation is loading. Please wait.

Atmospheric data for Arctic modeling John Walsh International Arctic Research Center University of Alaska, Fairbanks Arctic System Modeling Workshop, Montreal,

Similar presentations


Presentation on theme: "Atmospheric data for Arctic modeling John Walsh International Arctic Research Center University of Alaska, Fairbanks Arctic System Modeling Workshop, Montreal,"— Presentation transcript:

1 Atmospheric data for Arctic modeling John Walsh International Arctic Research Center University of Alaska, Fairbanks Arctic System Modeling Workshop, Montreal, July 2009

2 Three categories of atmospheric observations: 1)Routine measurements for input to NWP models 2) Special observing networks 3)Short-duration field campaigns

3 Three categories of atmospheric observations: 1)Routine measurements for input to NWP models 2) Special observing networks 3)Short-duration field campaigns + Value-added products: reanalyses gridded fields (e.g., CRU) Polar Pathfinder products

4 Routine measurements – in some respects, the Arctic is well-covered  surface synoptic network  rawinsonde network  buoy, ship reports  aircraft reports  satellite measurements (profiles of T, q, wind)  Archived in reanalysis ingest data banks (e.g., PREPBUFR files at NCAR)

5 Surface station observationsUpper-air rawinsonde observations

6 Surface ship and ocean buoy reports 7-days

7 Reports from commercial, military, and reconnaissance sources 7-days: 01/01/2003 - 01/07/2003

8 Satellite-derived temperatures 7-days Winds derived from satellite observed cloud drift analysis 7-days

9 6-hour accumulated observations: red: surface station slate blue: upper-air yellow: sat. temp. green: sat. wind violet: aircraft sky blue: ship 01/01/2003 00Z

10 6-hour accumulated observations: red: surface station slate blue: upper-air yellow: sat. temp. green: sat. wind violet: aircraft sky blue: ship 01/01/2003 06Z

11 6-hour accumulated observations: red: surface station slate blue: upper-air yellow: sat. temp. green: sat. wind violet: aircraft sky blue: ship 01/01/2003 12Z

12 6-hour accumulated observations: red: surface station slate blue: upper-air yellow: sat. temp. green: sat. wind violet: aircraft sky blue: ship 01/01/2003 18Z

13 SID=BAW269, YOB= 60.00, XOB=340.00, ELV=10058, DHR=-0.550, RPT= 17.450, TCOR=0, TYP=130, TSB=0, T29= 41, ITP=99, SQN= 26 PROCN= 0, SAID=*** RCT= 18.08, PCAT=*****, POAF=***, DGOT=*** ---------------------------------------------------------------------------------------------- level 1 obs qmark qc_step rcode fcst anal oberr category ---------------------------------------------------------------------------------------------- PRESSURE (MB) 262.0 2. PREPRO ***** ******** ******** ******** 6. SP HUMIDITY(MG/KG) ******** ****** ***** 35.0 35.0 ******** 6. TEMPERATURE (C) -62.0 1. PREPACQC 17. -61.1 -60.9 1.7 6. TEMPERATURE (C) -62.0 2. PREPRO ***** -61.1 -60.9 1.7 6. HEIGHT (METERS) 10058.0 2. PREPRO ***** 9708.0 9724.0 ******** 6. U-COMP WIND (M/S) 4.4 1. PREPACQC 17. -2.3 1.8 3.6 6. U-COMP WIND (M/S) 4.4 2. PREPRO ***** -2.3 1.8 3.6 6. V-COMP WIND (M/S) 2.6 1. PREPACQC 17. 4.8 2.1 3.6 6. V-COMP WIND (M/S) 2.6 2. PREPRO ***** 4.8 2.1 3.6 6. WIND DIR (DEG) 240.0 ****** PREPRO ***** ******** ******** ******** 6. WIND SPEED (KNOTS) 10.0 ****** PREPRO ***** ******** ******** ******** 6. Sample PrepBUFR observations: SID=48582, YOB= 82.85, XOB=194.99, ELV= 0, DHR= 1.883, RPT= 19.883, TCOR=0, TYP=180, TSB=*, T29=562, ITP=99, SQN= 203 PROCN= 2, SAID=*** PMO=******, PMQ=** ---------------------------------------------------------------------------------------------- level 1 obs qmark qc_step rcode fcst anal oberr category ---------------------------------------------------------------------------------------------- PRESSURE (MB) 988.2 2. PREPRO ***** 987.6 987.4 1.6 0. SP HUMIDITY(MG/KG) ******** ****** ***** 234.0 239.0 ******** 0. TEMPERATURE (C) -33.3 2. PREPRO ***** -32.8 -32.8 2.5 0. HEIGHT (METERS) 0.0 2. PREPRO ***** -4.0 -5.0 ******** 0.

14 PrepBUFR data Quality Control Flags 0) Keep (always assimilate) 1)Good 2)Neutral or not checked (default) -- e.g., IAOBP T and P obs are flagged as QC=2 3)Suspect 4)Rejected (don’t assimilate) ** Rejected obs. have an additional flag layer indicating justification (e.g., conflicts with a pre-existing QC=0; threshold test failure, etc.)

15 2) Examples of special observing networks International Arctic Buoy Network ( + Russian NP stations) Greenland automated weather stations Trace gas/chemical sampling (NOAA CMDL) Baseline Surface Radiation Network (BSRN), ARM International Arctic System for Observing the Atmosphere (IASAO)

16 Tiksi, Russia Alert, CanadaBarrow, Alaska Eureka, Canada Summit, Greenland Ny-Alesund, Svalbard IASOA Target Observatories IASAO

17 IASAO: International Arctic System for Observing the Atmosphere

18 3) Short-duration field programs -- process studies for algorithm development, model validation SHEBA ATLAS, LAII Flux Study ARM field campaigns OASIS IPY cruises … others

19 Problem areas Precipitation, especially solid precip (snowfall, depth, water equivalent) Clouds Aerosols … others


Download ppt "Atmospheric data for Arctic modeling John Walsh International Arctic Research Center University of Alaska, Fairbanks Arctic System Modeling Workshop, Montreal,"

Similar presentations


Ads by Google