Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maxwell’s Equations in Vacuum (1) .E =  /  o Poisson’s Equation (2) .B = 0No magnetic monopoles (3)  x E = -∂B/∂t Faraday’s Law (4)  x B =  o j.

Similar presentations


Presentation on theme: "Maxwell’s Equations in Vacuum (1) .E =  /  o Poisson’s Equation (2) .B = 0No magnetic monopoles (3)  x E = -∂B/∂t Faraday’s Law (4)  x B =  o j."— Presentation transcript:

1 Maxwell’s Equations in Vacuum (1) .E =  /  o Poisson’s Equation (2) .B = 0No magnetic monopoles (3)  x E = -∂B/∂t Faraday’s Law (4)  x B =  o j +  o  o ∂E/∂t Maxwell’s Displacement In vacuum with  = 0 and j = 0 (1’) .E =  (4’)  x B =  o  o ∂E/∂t

2 Maxwell’s Equations in Vacuum Take curl of both sides of 3’ (3)  x (  x E) = -∂ (  x B)/∂t = -∂ (  o  o ∂E/∂t)/∂t = -  o  o ∂ 2 E/∂t 2  x (  x E) =  ( .E) -  2 E -  2 E = -  o  o ∂ 2 E/∂t 2 ( .E = 0)  2 E -  o  o ∂ 2 E/∂t 2 = 0 Vector wave equation

3 Maxwell’s Equations in Vacuum Plane wave solution to wave equation E(r, t) = Re {E o e i (k.r-  t) }E o constant vector  2 E =(∂ 2 /∂x 2 + ∂ 2 /∂y 2 + ∂ 2 /∂z 2 )E = -k 2 E .E = ∂E x /∂x + ∂E y /∂y + ∂E z /∂z = i k.E = ik.E o e i (k.r-  t) If E o || k then .E ≠ 0 and  x E = 0 If E o ┴ k then .E = 0 and  x E ≠ 0 For light E o ┴ k and E(r, t) is a transverse wave

4 r r || rr k Consecutive wave fronts Plane waves travel parallel to wave vector k Plane waves have wavelength 2  /k Maxwell’s Equations in Vacuum EoEo

5 Plane wave solution to wave equation E(r, t) = E o e i(k.r-  t) E o constant vector  o  o ∂ 2 E/∂t 2 = -  o  o  2 E  o  o  2 =k 2  =±k/(  o  o ) 1/2 = ±ck  /k = c = (  o  o ) -1/2 phase velocity  = ±ck Linear dispersion relationship  (k) k

6 Maxwell’s Equations in Vacuum Magnetic component of the electromagnetic wave in vacuum From Faraday’s law  x (  x B) =  o  o ∂(  x E)/∂t =  o  o ∂(-∂B/∂t)/∂t = -  o  o ∂ 2 B/∂t 2  x (  x B) =  ( .B) -  2 B -  2 B = -  o  o ∂ 2 B/∂t 2 ( .B = 0)  2 B -  o  o ∂ 2 B/∂t 2 = 0 Same vector wave equation as for E

7 Maxwell’s Equations in Vacuum If E(r, t) = E o e i(k.r-  t) and k || z and E o || x (x,y,z unit vectors)  x E = ik E ox e i(k.r-  t) y = -∂B/∂t From Faraday’s Law ∂B/∂t = -ik E ox e i(k.r-  t) y B = (k/  ) E o e i(k.r-  t) y = (1/c) E o e i(k.r-  t) y For this wave E o || x, B o || y, k || z, cB o = E o

8 Energy in Electromagnetic Waves Energy density Average obtained over one cycle of light wave

9 Energy in Electromagnetic Waves Average energy over one cycle of light wave Distance travelled by light over one cycle c  = 2  c/  Average energy in volume ab c  a b cc

10 Energy in Electromagnetic Waves


Download ppt "Maxwell’s Equations in Vacuum (1) .E =  /  o Poisson’s Equation (2) .B = 0No magnetic monopoles (3)  x E = -∂B/∂t Faraday’s Law (4)  x B =  o j."

Similar presentations


Ads by Google