Presentation is loading. Please wait.

Presentation is loading. Please wait.

Room at the Bottom Exploring Nanospace with Anti-matter Suzanne V Smith Node Director, Centre of Excellence in Anti-matter Matter Studies, Australia Senior.

Similar presentations


Presentation on theme: "Room at the Bottom Exploring Nanospace with Anti-matter Suzanne V Smith Node Director, Centre of Excellence in Anti-matter Matter Studies, Australia Senior."— Presentation transcript:

1 Room at the Bottom Exploring Nanospace with Anti-matter Suzanne V Smith Node Director, Centre of Excellence in Anti-matter Matter Studies, Australia Senior Research Fellow Australian Nuclear Science and Technology Organisation. svs@ansto.gov.au

2 In his famous lecture, ‘There's Plenty of Room at the Bottom” in 1959 Richard Feynman considered the possibility of controlling individual atoms as a more powerful new form of chemistry. In 1965 Richard Feynman received a Nobel Prize in Physics for his contributions to quantum electrodynamics.

3 Particle size (2 to 10 nm) influences the fluorescence of material one nano-metre =one billionth of metre Quantum dots Applications in lasers, amplifiers, and biological sensors

4 Surface Area of Particles per cm 3 Diameter of Nanoparticle (nm) Nanoparticles – more atoms on the surface of a particle 1 nm 10 nm 100 nm 1um The cell

5 Biological systems can sense, react, regulate, grow, regenerate, and heal.

6 The nucleus has nanopores that control the movement of molecules in an out. The cell has molecules embedded in its wall which assist to trap molecules or trigger chemical process within the cell.

7 Sensors (functional surfaces or nano- and micro- particles) Delivery Vehicles (controlled released particles and surfaces) Imaging agents (magnetic nanoparticles, quantum dots) Self cleaning surfaces (e.g Water-repellent fabrics) Self heal surfaces (e.g anti-corrosion) Important questions Porosity Surface reactivity Size, shape and chemical composition

8

9 Hip joints – biocompatible materials Intelligent clothing – pulse and respiration Light bike frame- Carbon nanotube Fuel cells to power batteries and cars Self-healing materials – corrosion resistant paint Solar panels for heat and light.

10 Smell 4000 - 10,000 compound small molecules - 300 to 500 Mw volatile one drop in an olympic swimming pool

11 Working at up to 10 -5 parts per billion Or 1 drop of dye in up to 100 Olympic pools

12 10 -8 to 10 -10 M SMITH SV: IDrugs (2005) 8(10):827-833.http://en.wikipedia.org/wiki/Positron Positron Emission Tomography Imaging

13 ++ e- γ γ Positronium 511KeV Positron or Anti-matter binds to electrons

14 Positrons can tell us about pore or nanospaces in materials Detector ++ ++ Nanospaces or pores larger the pore the longer the lifetime

15 Non-connected pores Connected pores How do we know if our chemical is in our materials?

16 ~10mg sample (x4) + 1mL (radiotracers + buffer) 3 x 20μL Rotate Centrifuge Activity counted in γ counter 10 sec counts Radiotracers tells is the molecules absorb

17 Eri silk Eri silk Mulberry silk Mulberry silk Samia ricini Bombyx mori Different morphology And amino acid composition

18 Effect of pH and time on metal binding [M 2+ ] = 10 -4 M; powder 10 mg; Temp.23 o C; Total Vol: 1.0 mL; centrifuge; 5000 rpm Cd(II) Selectivity dependent on species

19 SEM image of hollow silica shells Hollow Silica Shells - for drug delivery and controlled release PMPS Daniel E. Lynch, Langmuir, Vol. 21, No. 14, 2005 Exilica Ltd UK  C Predict Absorption Behaviour Type and size of molecules Availability Adsorption or absorption

20 pH Concentration of Co-Ligand absorbed into silica shells (x10 -8 moles per mg) [Co-(diamsar] 2+ [Co-(dota)] 2- [Co-(sarar] 2+ [Co-(bis-(p- aminobenzyl)diamsar] 2+ Binding Properties of Hollow Silica Shells

21 Natural Fibres – Merino Wool

22 Powders are selective and absorb in minutes at room temperature !

23 Self Healing Material – Anti-corrosion Materials Multifunctional Inhibitors, Delivery systems, Self Repair/Regeneration What happens when a space ship gets a crack on its surface… who goes to fix the surface? Scientists put chemicals that react on release to repair the defect.

24 crackhealing agent Time Self Healing Materials


Download ppt "Room at the Bottom Exploring Nanospace with Anti-matter Suzanne V Smith Node Director, Centre of Excellence in Anti-matter Matter Studies, Australia Senior."

Similar presentations


Ads by Google