Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS 6461: Computer Architecture Instruction Level Parallelism

Similar presentations


Presentation on theme: "CS 6461: Computer Architecture Instruction Level Parallelism"— Presentation transcript:

1 CS 6461: Computer Architecture Instruction Level Parallelism
Instructor: M. Lancaster Corresponding to Hennessey and Patterson Fifth Edition Section 3.1

2 Instruction Level Parallelism
Almost all processors since 1985 use pipelining to overlap the execution of instructions and improve performance. This potential overlap among instructions is called instruction level parallelism First introduced in the IBM Stretch (Model 7030) in about 1959 Later the CDC 6600 incorporated pipelining and the use of multiple functional units The Intel i486 was the first pipelined implementation of the IA32 architecture January 2013 Instruction Level Parallelism

3 Instruction Level Parallelism
Instruction level parallel processing is the concurrent processing of multiple instructions Difficult to achieve within a basic code block Typical MIPS programs have a dynamic branch frequency of between 15% and 25% That is, between three and six instructions execute between a pair of branches, and data hazards usually exist within these instructions as they are likely to be dependent Given basic code block size in number of instructions, ILP must be exploited across multiple blocks January 2013 Instruction Level Parallelism

4 Instruction Level Parallelism
The current trend is toward very deep pipelines, increasing from a depth of < 10 to > 20. With more stages, each stage can be smaller, more simple and provide less gate delay, therefore very high clock rates are possible. January 2013 Instruction Level Parallelism

5 Loop Level Parallelism Exploitation among Iterations of a Loop
Loop adding two 1000 element arrays Code for (i=1; i<= 1000; i=i+1) x[i] = x[i] + y[i]; If we look at the generated code, within a loop there may be little opportunity for overlap of instructions, but each iteration of the loop can overlap with any other iteration January 2013 Instruction Level Parallelism

6 Concepts and Challenges Approaches to Exploiting ILP
Two major approaches Dynamic – these approaches depend upon the hardware to locate the parallelism Static – fixed solutions generated by the compiler, and thus bound at compile time These approaches are not totally disjoint, some requiring both Limitations are imposed by data and control hazards January 2013 Instruction Level Parallelism

7 Features Limiting Exploitation of Parallelism
Program features Instruction sequences Processor features Pipeline stages and their functions Interrelationships How do program properties limit performance? Under what circumstances? January 2013 Instruction Level Parallelism

8 Approaches to Exploiting ILP Dynamic Approach
Hardware intensive approach Dominate desktop and server markets Pentium III, 4, Athlon MIPS R10000/12000 Sun UltraSPARC III PowerPC 603, G3, G4 Alpha 21264 January 2013 Instruction Level Parallelism

9 Approaches to Exploiting ILP Static Approach
Compiler intensive approach Embedded market and IA-64 January 2013 Instruction Level Parallelism

10 Instruction Level Parallelism
Terminology and Ideas Cycles Per Instruction Pipeline CPI = Ideal Pipeline CPI + Structural Stalls + Data Hazard Stalls + Control Stalls Ideal Pipeline CPI is the max that we can achieve in a given architecture. Stalls and/or their impacts must be minimized. During 1980s CPI =1 was a target objective for single chip microprocessors 1990’s objective: reduce CPI below 1 Scalar processors are pipelined processors that are designed to fetch and issue at most one instruction every machine cycle Superscalar processors are those that are designed to fetch and issue multiple instructions every machine cycle January 2013 Instruction Level Parallelism

11 Approaches to Exploiting ILP That We Will Explore
Technique Reduces Forwarding and bypassing Potential data hazards and stalls Delayed branches and simple branch scheduling Control hazard stalls Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences Dynamic scheduling with renaming Data hazard stalls and stalls from antidependences and output dependences Branch prediction Control stalls Issuing multiple instructions per cycle Ideal CPI Hardware Speculation Data hazard and control hazard stalls Dynamic memory disambiguation Data hazard stalls with memory Loop unrolling Basic computer pipeline scheduling Data hazard stalls Compiler dependence analysis, software pipelining, trace scheduling Ideal CPI, data hazard stalls Hardware support for Compiler speculation Ideal CPI, data, control stalls. January 2013 Instruction Level Parallelism

12 Approaches to Exploiting ILP Review of Terminology
Instruction issue: The process of letting an instruction move from the instruction decode phase (ID) into the instruction execution (EX) phase Interlock (pipeline interlock, instruction interlock) is the resolution of pipeline hazards via hardware. Pipeline interlock hardware must detect all pipeline hazards and ensure that all dependencies are satisfied January 2013 Instruction Level Parallelism

13 Data Dependencies and Hazards
How much parallelism exists in a program and how it can be exploited If two instructions are parallel, they can execute simultaneously in a pipeline without causing any stalls (assuming no structural hazards exist) There are no dependencies in parallel instructions If two instructions are not parallel and must be executed in order, they may often be partially overlapped. January 2013 Instruction Level Parallelism

14 Instruction Level Parallelism
Pipeline Hazards Hazards make it necessary to stall the pipeline. Some instructions in the pipeline are allowed to proceed while others are delayed For this example pipeline approach, when an instruction is stalled, all instructions further back in the pipeline are also stalled No new instructions are fetched during the stall Instructions issued earlier in the pipeline must continue January 2013 Instruction Level Parallelism

15 Data Dependencies and Hazards
Data Dependences – an instruction j is data dependent on instruction i if either of the following holds Instruction i produces a result that may be used by instruction j Instruction j is data dependent on instruction k, and instruction k is data dependent on instruction i – that is, one instruction is dependent on another if there exists a chain of dependencies of the first type between two instructions. January 2013 Instruction Level Parallelism

16 Data Dependencies and Hazards
Data Dependences – Code Example LOOP: L.D F0,0(R1) ;F0=array element ADD.D F4,F0,F2 ;add scalar in F2 S.D F4,0(R1) ;store result DADDUI R1,R1,#-8 ;decrement pointer 8 BNE R1,R2,LOOP; The above dependencies are in floating point data for the first two arrows, and integer data in the last two instructions January 2013 Instruction Level Parallelism

17 Data Dependencies and Hazards
Data Dependences – Arrows show where order of instructions must be preserved If two instructions are dependent, they cannot be simultaneously executed or be completely overlapped January 2013 Instruction Level Parallelism

18 Data Dependencies and Hazards
Dependencies are properties of programs Whether a given dependence results in an actual hazard being detected and whether that hazard actually causes a stall are properties of the pipeline organization January 2013 Instruction Level Parallelism

19 Data Dependencies and Hazards
Hazard created – Code Example DADDUI R1,R1,#-8 ;decrement pointer 8 BNE R1,R2,LOOP ; When the branch test is moved from EX to ID stage If test stayed in ID, dependence would not cause a stall (Branch delay would still be two cycles however) January 2013 Instruction Level Parallelism

20 Data Dependencies and Hazards
Branch destination and test known at end of third cycle of execution Branch destination and test known at end of second cycle of execution January 2013 Instruction Level Parallelism

21 Data Dependencies and Hazards
Presence of dependence indicates a potential for a hazard, but the actual hazard and the length of any stall is a property of the pipeline. Data dependence Indicates possibility of stall Determines the order in which results are calculated Sets an upper bound on how much parallelism can be possibly exploited. We will focus on overcoming these limitation January 2013 Instruction Level Parallelism

22 Overcoming Dependences
Two Ways Maintain dependence but avoid the hazard Schedule the code dynamically Transform the code January 2013 Instruction Level Parallelism

23 Difficulty in Detecting Dependences
A data value may flow between instructions either through registers or through memory locations Therefore, detection is not always straightforward For instructions referring to memory, the register dependences are easy to detect Suppose however we have R4 = 20 and R6 = 100 and we use 100(R4) and 20(R6) Suppose we have incremented R4 in an instruction between two references (say 20(R4) ) that look identical January 2013 Instruction Level Parallelism

24 Name Dependences; Two Categories
Two instructions use the same register or memory location, called a name, but there is actually no flow of data between the instructions associated with that name. In cases where i precedes j. 1. An antidependence between instructions i and j occurs when instruction j writes a register or memory location that instruction i reads. The original ordering must be preserved 2. An output dependence occurs when instruction i and instruction j write the same register or memory location, the order again must be preserved January 2013 Instruction Level Parallelism

25 Name Dependences; Two Categories
1. An antidependence i DADD R1,R2.#-8 j DADD R2,R5,0 2. An output dependence j DADD R1,R4,#10 January 2013 Instruction Level Parallelism

26 Instruction Level Parallelism
Name Dependences Not true data dependencies, and therefore we could execute them simultaneously or reorder them if the name (register or memory location) used in the instructions is changed so that the instructions do not conflict Register renaming is easier i DADD R1,R2,#-8 j DADD R2,R4,#10 i DADD R1,R2,#-8 j DADD R5,R4,#10 January 2013 Instruction Level Parallelism

27 Instruction Level Parallelism
Data Hazards A hazard is created whenever there is a dependence between instructions, and they are close enough that the overlap caused by pipelining or other reordering of instructions would change the order of access to the operand involved in the dependence. We must preserve program order; the order the instructions would execute if executed in a non-pipelined system However, program order only need be maintained where it affects the outcome of the program January 2013 Instruction Level Parallelism

28 Data Hazards – Three Types
Two instructions i and j, with i occurring before j in program order, possible hazards are: RAW (read after write) – j tries to read a source before i writes it, so j incorrectly gets the old value The most common type Program order must be preserved In a simple common static pipeline a load instruction followed by an integer ALU instruction that directly uses the load result will lead to a RAW hazard January 2013 Instruction Level Parallelism

29 Data Hazards – Three Types
Second type: WAW (write after write) – j tries to write an operand before it is written by i, with the writes ending up in the wrong order, leaving value written by i Output dependence Present in pipelines that write in more than one pipe or allow an instruction to proceed even when a previous instruction is stalled In the classic example, WB stage is used for write back, this class of hazards avoided. If reordering of instructions is allowed this is a possible hazard Suppose an integer instruction writes to a register after a floating point instruction does January 2013 Instruction Level Parallelism

30 Data Hazards – Three Types
Third type: WAR (write after read) – j tries to write an operand before it is read by i, so i incorrectly gets the new value. Antidependence Cannot occur in most static pipelines – note that reads are early in ID and writes late in WB January 2013 Instruction Level Parallelism

31 Instruction Level Parallelism
Control Dependencies Determines ordering of instruction, i with respect to a branch instruction so that the instruction i is executed in the correct program order and only when it should be. Example if p1 { S1; }; if p2 { S2; } January 2013 Instruction Level Parallelism

32 Instruction Level Parallelism
Control Dependencies Example if p1 { S1; }; if p2 { S2; } S1 is control dependent on p1 and S2 is control dependent on P2 but not on P1 January 2013 Instruction Level Parallelism

33 Instruction Level Parallelism
Control Dependencies Two constraints imposed An instruction that is control dependent on a branch cannot be moved before the branch so that its execution is no longer controlled by the branch. For example we cannot take a statement from the then portion of an if statement and move it before the if statement. An instruction that is not control dependent on a branch cannot be moved after the branch so that the execution is controlled by the branch. For example, we cannot take a statement before the if and move it into the then portion if p1 { S1; }; if p2 { S2; } January 2013 Instruction Level Parallelism

34 Instruction Level Parallelism
Control Dependencies Two properties of our simple pipeline preserve control dependencies Instructions execute in program order Detection of control or branch hazards ensures that an instruction that is control dependent on a branch is not executed until the branch direction is known We can introduce instructions that should not have been executed (violating control dependences) if we can do so without affecting the correctness of the program January 2013 Instruction Level Parallelism

35 Control Dependencies are Really…
Not the issue; Really the issue is the preservation of Exception behavior Data flow January 2013 Instruction Level Parallelism

36 Preserving Exception Behavior
Preserving exception behavior means that any changes in the ordering of instruction execution must not change how exceptions are raised in the program We may relax this rule and say that reordering of instruction execution must not cause any new exceptions DADDU R2,R3,R4 BEQZ R2, L1 LW R1,0(R2) ;Could cause illegal mem acc L1: … In the above, if we do not maintain the data dependence of R2, we may change the program. If we ignore the control dependency and move the load instruction before the branch, the load instruction may cause a memory protection exception There is no visible data dependence that prevents this interchange, only control dependence January 2013 Instruction Level Parallelism

37 Preserving Exception Behavior
To allow reordering of these instructions (which as we said preserves data dependence) we would like to just ignore the exception. January 2013 Instruction Level Parallelism

38 Instruction Level Parallelism
Preserving Data Flow This means preserving the actual flow of data values between instructions that produce results and those that consume them. Branches make data flow dynamic, since they allow the source of data for a given instruction to come from many points January 2013 Instruction Level Parallelism

39 Instruction Level Parallelism
Preserving Data Flow Example DADDU R1,R2,R3 BEQZ R4,L DSUBU R1,R5,R6 L: … OR R7,R1,R8 ; depends on branch taken Cannot move DSUBU above branch By preserving the control dependence of the OR on the branch we prevent an illegal change to the data flow January 2013 Instruction Level Parallelism

40 Instruction Level Parallelism
Preserving Data Flow Sometimes violating the control dependence cannot affect either the exception behavior or the data flow DADDU R1,R2,R3 BEQZ R1,skip DSUBU R4,R5,R6 DADDU R5,R4,R9 skip: OR R7,R1,R8 ; suppose R4 not used after here If R4 unused after this point, changing the value of R4 just before the branch would not affect data flow If R4 were dead and DSUBU could not generate an exception* we could move the DSUBU instruction before the branch This is called speculation since compiler is betting on branch outcome January 2013 Instruction Level Parallelism

41 Control Dependence Again
Control dependence in the simple pipeline is preserved by implementing control and hazard detection that can cause control stalls Can be eliminated by a variety of hardware techniques Delayed branches can reduce stalls arising from control hazards, but requires that the compiler preserve data flow January 2013 Instruction Level Parallelism


Download ppt "CS 6461: Computer Architecture Instruction Level Parallelism"

Similar presentations


Ads by Google