Download presentation
1
FCAT Review Week 1 Earth Science
FCAT Review Week 1 Earth Science **Covers NGSSS Big Idea’s 6, 7, 10, 11, 12 and 13
2
Day 1: Earth’s Structures and Patterns
Big Idea 6 Learning Goals: Students will be able to Differentiate between physical and chemical weathering Differentiate between weathering, erosion, and deposition Explain the composition of the layers of the Earth Explain how the changes in rocks within the rock cycle relates to weathering, erosion, and deposition. Explain how we use the law of superposition and radioactive dating to date fossils. Explain how the theory of plate tectonics is used to describe how the Earth’s surface is built up and torn down. Explain how the convecting mantle causes earthquakes, volcanic eruptions, and creates mountains and ocean basins.
3
Physical vs. Chemical Weathering
Bellwork – Day 1: Differentiate between physical and chemical weathering Types of weathering Explanation of type Agents for weathering Physical The breaking down of rock into smaller pieces by physical means Ice, Wind, Water, Gravity, Plants, Animals Chemical process of breaking down rock as a result of chemical reactions Water- important because most substances dissolve in water, Acids found in: Acid Precipitation, Acids in groundwater, Acids in living things, the measure of acidity is called pH. An acid has a pH less than 7 NGSSS: SC.6.E.6.1: Describe and give examples of ways in which Earth's surface is built up and torn down by physical and chemical weathering, erosion, and deposition.
4
Differentiate between weathering, erosion, and deposition
Weathering is the breaking down of rocks and other materials on the earth’s surface. There are 2 types of weathering: Physical and Chemical (bellwork) Erosion is the movement of weathered material from one place to another. Erosion occurs faster on barren land than on land covered with vegetation. (plant roots hold soil in place) Deposition is when soil, rocks, or other sediment are deposited, or left, somewhere different than where they started. Deposition occurs as the agents of deposition slow down and lose energy
6
Explain the composition of the layers of the Earth.
The Earth has 3 main layers: the crust, mantle and the core Crust: the brittle, rocky outer layer of Earth. Very thin compared to other layers, like the shell of an egg. Two types: Oceanic Crust – crust under the oceans and Continental Crust – crust on land (thicker Mantle: thick middle layer in the solid part of the Earth Uppermost Mantle (Lithosphere) similar rocks to that of the crust; Asthenosphere - heated rocks begin to melt and flow slowly underneath the lithosphere. Upper Mantle - higher temperatures and high pressure cause rocks to stop melting and become solid again Lower Mantle - most dense part of the mantle Core: dense and metallic center of the Earth, 2 parts – Solid inner core and liquid outer core composed mainly of iron and a small amount of nickel SC.7.P.6.1: Describe the layers of the solid Earth, including the lithosphere, the hot convecting mantle, and the dense metallic liquid and solid cores.
8
Explain how the changes in rocks within the rock cycle relates to weathering, erosion, and deposition Sedimentary rock: Rocks found close to the surface, less dense, formed from weathering, erosion, and deposition. Metamorphic rock: Rocks found deeper down and formed where pressure and heat are high like where tectonic plates collides. Igneous Rock: Igneous rocks form when molten rock cools and becomes solid. ALL TYPES OF ROCKS CAN EVENTUALLY BE BROKEN BACK DOWN AND TRANSFORMED INTO ONE OF THE OTHER TYPES. SC.7.P.6.2: Identify the patterns within the rock cycle and relate them to surface events (weathering and erosion) and sub-surface events (plate tectonics and mountain building).
11
Explain how we use the law of superposition and radioactive dating to date fossils.
The Law of Superposition – says that the youngest rocks are on the top and the oldest rocks are on the bottom. Radioactive dating of fossils: Carbon is one of the basic elements of life. Carbon atoms decay at a constant rate, so scientists use the decay of carbon in life forms to date when these fossils lived. SC.7.P.6.3: Identify current methods for measuring the age of Earth and its parts, including the law of superposition and radioactive dating
12
Explain how the theory of plate tectonics is used to describe how the Earth’s surface is built up and torn down. The theory of Plate Tectonics is based on Wegeners theory of Continental Drift which stated that the continents were once all connected (Pangea). The movement of the tectonic plates caused the continents to separate and move apart. The evidence of what happens at plate boundaries and the formation of new crust helps support this theory. Fossil evidence where organisms of the same species were found on different continents also help support it. SC.7.P.6.4: Explain and give examples of how physical evidence supports scientific theories that Earth has evolved over geologic time due to natural processes. SC.7.P.6.5: Explore the scientific theory of plate tectonics by describing how the movement of Earth's crustal plates causes both slow and rapid changes in Earth's surface, including volcanic eruptions, earthquakes, and mountain building.
14
Explain how the convecting mantle causes earthquakes, volcanic eruptions, and creates mountains and ocean basins. SC.7.P.6.7: Recognize that heat flow and movement of material within Earth causes earthquakes and volcanic eruptions, and creates mountains and ocean basins. The earth’s mantle is where convection currents happen that provide the energy for tectonic plates to move.
15
Types of Boundaries Convergent boundary: two plates move towards each other – This can cause subduction where one plate slides underneath another (subduction) and is destroyed or it can slowly form a mountain.
16
Types of Boundaries Divergent boundary: where two plates move away from each other resulting in new crust (ocean basins) being formed. Transform boundary: where two plates slide alongside each other - although crust is neither created or destroyed here, they can get caught and cause earthquakes
17
Day 2: Earth’s Atmosphere and Weather
Big Idea 7 Learning Goals: Students will be able to Differentiate between radiation, conduction, and convection. Explain how the water cycle affects weather patterns and climate. Explain how the jet stream and ocean currents affect local weather. Explain the interactions between the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere How does the Sun’s energy influence weather and climate? Differentiate between weather and climate. Describe how the composition and structure of the atmosphere protects life and insulates the planet.
18
Differentiate between radiation, conduction, and convection
Conduction: heat transfer through direct contact Convection: heat transfer from a gas to a gas or a gas to a liquid Radiation: heat transfer through electromagnetic radiation
19
Explain how the water cycle affects weather patterns and climate.
The water cycle plays a key role in weather patterns and local climate. For example: Cities near the ocean will have higher humidity levels and higher chances of rain because of this. Locations farther from where evaporation happens will have drier climates.
21
Explain how the jet stream and ocean currents affect local weather.
A jet stream forms high in the upper troposphere between two air masses of very different temperature. The greater the temperature difference between the air masses, the faster the wind blows in the jet stream.
22
Explain how the jet stream and ocean currents affect local weather.
Varying ocean temperatures affect local atmospheric pressure, which creates regional wind patterns that, in turn, drive oceanic currents that affect surface ocean temperatures.
23
Explain the interactions between the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere.
Atmosphere: Earth’s air Geosphere: Earth’s nonliving structures Biosphere: Earth’s living organisms Hydrosphere: Earth’s waters Cryosphere: Earth’s ice masses Plus the Cyosphere which includes all the water in solid form (ice).
24
How are Earth’s sphere’s connected?
Even a small change in one system can change one or more of the other systems.
25
How does the Sun’s energy influence weather and climate?
The Earth ‘s spherical shape causes it to be heated unevenly. The equator region receives more direct sunlight (thermal energy)
26
How does the Sun’s energy influence weather and climate?
The warmer air at the equator caused by more direct sunlight causes convection currents to form in Earth’s atmosphere. These currents are what drive weather patterns.
27
Differentiate between weather and climate.
Weather is the daily atmospheric conditions in an area. Climate is the average weather conditions in an area over a longer period of time.
28
Describe how the composition and structure of the atmosphere protects life and insulates the planet.
Our atmosphere does three main things: helps reflect some of the radiation from the Sun holds heat in so that the temperature can sustain life Holds in the gases needed for life; CO2, O2, and N
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.