Download presentation
Presentation is loading. Please wait.
Published byYosef Atkins Modified over 9 years ago
1
Respiratory Physiology
2
heart
3
circuitry
4
heart circuitry tissues
5
lung heart circuitry tissues
6
lung heart circuitry tissues cell
8
STRUCTURE of respiratory system - Conducting zone - Respiratory zone
9
STRUCTURE of respiratory system - Conducting zone (nose, larynx, trachea, bronchi, bronchioles) The walls conducting airways contain smooth muscle -Sympathetic -Parasympathetic - 2 receptors relaxation, dilatation of the airway
10
STRUCTURE of respiratory system - Conducting zone Anatomic dead space -V of the conducting airways Physiologic dead space -V of the lungs that does not participapate in gas exchance
11
STRUCTURE of respiratory system - Conducting zone Physiologic dead space (VD) -V of the lungs that does not participapate in gas exchance Pa CO2 – PE CO2 VD = VT x ---------------- Pa CO2 VT – tidal volume Pa CO2 – P CO2 of arterial blood PE CO2 – P CO2 of mixed expired air
12
STRUCTURE of respiratory system Respiratory zone Alveoli Lung ~ 300 x 10 6 alveoli
13
diaphragm inspiration expiration
14
inspiration – mm. intercosales externi
15
expiration – mm. intercosteles interni
16
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
17
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
18
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
19
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
20
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
21
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
23
diaphragm inspiration expiration pleura parietalis
24
diaphragm inspiration expiration pleura visceralis
25
diaphragm inspiration expiration pleura parietalis pleura visceralis transmural pressure
26
diaphragm inspiration expiration pleura parietalis pleura visceralis transpulmonal pressure
27
diaphragm inspiration expiration pleura parietalis pleura visceralis intrapulmonal pressure
28
diaphragm inspiration expiration pleura parietalis pleura visceralis transmural pressure transpulmonal p. intrapulmonal pressure
30
diaphragm inspiration expiration pleura parietalis pleura visceralis transpulmonal p.
31
bránice - diaphragma inspirace expirace pleura parietalis pleura visceralis transmural p. PNEUMOTHORAX
32
diaphragm inspiration expiration pleura parietalis pleura visceralis transmural p. transpulmonal p. intrapulmonal pressure alveoli
37
ventilation V
38
Physiologic dead space Is the volume of air in the lungs that does not participate in gas exchance (i.e.e it is dead) Anatomic dead space – is the volume of conducting airways Functional dead space volume – which is made up of alveoli that do not participate in gas exchance (alveoli that are ventilated, but are not perfused by pulmonary capilary blood)
39
Physiologic dead space P aCO2 – P ECO2 V D =V T x ----------------------- P aCO2 V D – physiologic dead space (mL) V T – tidal volume (mL) P aCO2 – P CO2 of arterial blood (mmHg) P ECO2 - P CO2 of expered air (mmHg)
40
Physiologic dead space P aCO2 – P ECO2 V D =V T x ----------------------- P aCO2 40 - 30 V D = 500 x -------------- 40 =500 x 0.25 =125
41
Alveolar ventilation V A = (V T – V D ) x breasths/min V A - alveolar ventilation (mL/min) VT- tidal volume (mL) VD- physiologic dead space (mL/min)
42
Alveolar ventilation V A = (V T – V D ) x breasths/min V A = (500 – 125) x 16 = 375 x 16 = 6000 mL/min
43
lung heart circuitry tissues cell
45
diffusion
47
perfusion
51
ventilation diffusion perfusion
52
ventilation - static volums - dynamic volums
54
STATIC VOLUMS
55
1 s FEV 1 VC V t DYNAMIC VOLUMS FEV1 -------- x 100 VC > 80 % Physiological value:
56
1 s FEV 1 VC V t DYNAMIC VOLUMS OBSTRUCTION FEV1 = VC Restriction VC = FEV1
58
Infection inhaled allergens inhaled irritants food allergens inducing stimuli mental stress medicines Triggers
59
respiratory irritant factors physical activity preventing infection sick people, vaccination, intensive treatment sufficient fluid intake eat small portions breathing exercises
60
Differential diagnosis
61
steroid potentiation of beta-adrenergic receptor bronchospasmolytic effect cholinergic antagonism reduction in mucus production - anti-inflammatory effect - block the formation of antibodies - stabilization of lysosomes block - formation and release of histamine
62
1 s FEV 1 VC V t DYNAMIC VOLUMS RESTRICTION = FEV1 VC
63
difusion alveolo-capillary membrane (surfactant)
64
difusion alveolo-capillar membrane (surfactant)
65
perfusion (heart)
67
Pulmonary edema - cardiogenic - noncardiogenic
68
Cyanosis (right ventricle)
69
Causes of cyanosis Central cyanosis Decreased arterial saturation Hemoglobin abnormalities Peripheral cyanosis Reduced cardiac output Cold exposure Redistribution of blood flow from extremities Arterial obstruction Venous obstruction
70
lung heart circuitry tissues cell
71
perfusion (anemia)
72
perfusion (emboli)
73
perfusion (emboli)
75
dg. pulmonal emboli
76
Dg. pulmonal emboli
77
% hemoglobin saturation 100 pO 2 Bohrs effects
78
% hemoglobin saturation 100 Bohrs effect – O 2 hemoglobin dissociation curve 0 25 5075 100 pO 2
79
% hemoglobin saturation 100 Shift to the right 0 25 5075 100 pO2
80
100 čas Shift to the right temperature pH [H+] 2,3 - DPG % hemoglobin saturation 0 25 5075 100 pO2
81
100 Shift to the left temperature pH [H+] 2,3 - DPG % hemoglobin saturation 0 25 5075 100 pO2
82
% hemoglobin saturation 100 Bohr effect 0 25 5075 100 pO2
83
pO 2 mmHgsaturation (%) 1025 2035 2550 3060 4075 5085 6090 8096 10098 Values of pO 2 and corresponding values of percent saturation of hemoglobin
88
lung heart circuitry tissues cell
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.