Download presentation
Presentation is loading. Please wait.
Published byTrinity Neagle Modified over 9 years ago
1
IMS, 26 Nov 2004 1 Models for Thermal & Thermal : Pave the way for heat control Baowen Li ( 李保文 ) Nonlinear and Complex Systems Lab Department of Physics
2
IMS, 26 Nov 2004 2 Acknowledgement Collaborators: Lei Wang (Temasek Lab, NUS) Giulio Casati (Como, Italy and NUS) Financial Support: NUS Faculty Research Grant Temasek Young Investigator Award (DSTA - Defense Science and Technology Agency, Singapore)
3
IMS, 26 Nov 2004 3 1Introduction Motivations and objective 2Thermal diode: Rectification of heat flux 3Thermal Transistor Pave the way for heat control 4 Summary BL, LWang, G Casati, PRL 93, 184301 (2004) (27 Oct.) (Diode) BL, LWang, G Casati, PRL 94, xx(2005), cond-mat/0410172. (Transistor) Outline
4
IMS, 26 Nov 2004 4 Transistor was probably the most important invention in the 20 th century! What is the most important invention in the 20 th century?
5
IMS, 26 Nov 2004 5 YearCPUNo.of Trans 19714004*2,300 19728008*3,500 197480806,000 1978808629,000 1982286134,000 1985386275,000 19894861,200,000 1993Pentium3,100,000 1995Pentium Pro5,500,000 1997Pentium II7,500,000 2000Pentium IV42,000,000 2002Pentium IV55,000,000
6
IMS, 26 Nov 2004 6 Brief History of (Electric) Transistor Dec. 1947 (J. Barden and W. Brattain) June 1948 (Made public Annoucement) July 1951 FET (W Shockley - a Theorist) Sept. 1951 (Transistor Symposium to comm. Licence for 25,000US$) 1953 (Mass production by RAYTHEON) Texas Instrument Bell Lab
7
IMS, 26 Nov 2004 7 J. Bardeen and Brattain J. Bardeen and Brattain Phys. Rev. 74, 230 (1948) (Letters to the editor)
8
IMS, 26 Nov 2004 8 How about heat? Can we invent similar device to control heat? Heat is more important than electricity for human being and other forms of life.
9
IMS, 26 Nov 2004 9 Daily life experience Energy saving materials
10
IMS, 26 Nov 2004 10 Efficient thermal remover/taker for electronic chips Electronic Industry THE STRAITS TIMES : Tuesday, May 18, 2004
11
IMS, 26 Nov 2004 11 Defence Cosy uniform Infrared invisible materials
12
IMS, 26 Nov 2004 12 Diode: one way street 2. Diode: one way street
13
IMS, 26 Nov 2004 13. Thermal diode/Rectifier 2. Thermal diode/Rectifier
14
IMS, 26 Nov 2004 14 Question: Can we control heat flow in solid state device? If T L > T R, heat flows from left to right. If T L < T R, heat flow is inhibited from right to left. TLTL TRTR 2. Thermal diode/rectifier
15
IMS, 26 Nov 2004 15 2. Thermal diode/rectifier
16
IMS, 26 Nov 2004 16 Terraneo, Peyrard, and Casati Terraneo, Peyrard, and Casati PRL 99, 094302 (2002) |J + /J - |~ 1.7
17
IMS, 26 Nov 2004 17 New configuration? T+ T+ T- T- T- T- T+ T+
18
IMS, 26 Nov 2004 18 Configuration of the diode model from two coupled nonlinear oscillator chains
19
IMS, 26 Nov 2004 19 Heat conduction properties of the Frenkel- Kontorova model (BH,BLi,HZ, PRE 57, 2992 (1998).
20
IMS, 26 Nov 2004 20 Heat conduction properties of the Frenkel- Kontorova model (BH,BLi,HZ, PRE 57, 2992 (1998).
21
IMS, 26 Nov 2004 21 Heat conduction properties of the Frenkel- Kontorova model (BH,BLi,HZ, PRE 57, 2992 (1998). Temperature profile For N=100,200, 300 dT/dx ~ 1/N
22
IMS, 26 Nov 2004 22 Heat conduction properties of the Frenkel- Kontorova model ( BH,BLi,HZ, PRE 57, 2992 (1998) ). Thermal Conductivity: Heat current J~ 1/N
23
IMS, 26 Nov 2004 23 Phonon band of the Frenkel-Kontorova model Low temperature limit: High temperature limit: Maximal rectifying efficiency:
24
IMS, 26 Nov 2004 24
25
IMS, 26 Nov 2004 25 I-V curve ( Li and Wang and Casati, PRL 93, 184301(2004 ) T+ T+ T+ T+ T -
26
IMS, 26 Nov 2004 26 (a) Heat current vs coupling constant (b) Temperature profile
27
IMS, 26 Nov 2004 27 Heat current versus the ratio of two lattice constants
28
IMS, 26 Nov 2004 28 Finite size effect
29
IMS, 26 Nov 2004 29 Transistor: witching and Amplification 1. Bipolar Transistor (Barden and Brattain)
30
IMS, 26 Nov 2004 30 G(Gate) D(Drain) S(Source) V D (+) V S (-) ISIS IDID IGIG MOSFET I G ≈ 0, I D ≈ I S VGVG
31
IMS, 26 Nov 2004 31 TDTD TGTG JDJD How to build a thermal transistor ? Differentil thermal resistance: TSTS ToTo JGJG J JSJS TDTD T 0 ~T G TSTS JDJD
32
IMS, 26 Nov 2004 32 How to build a thermal transistor? The thermal transistor never works !!! Current amplification:
33
IMS, 26 Nov 2004 33 How to build a thermal transistor? Think something differently!!! How about if one of the thermal resistance is negative? JSJS JDJD T 0 ~T G
34
IMS, 26 Nov 2004 34 Negative differential thermal resistance /conductance
35
IMS, 26 Nov 2004 35 III Negative Differential Thermal Resistance/Conductance ( BLi et al. cond-mat/0410172 )
36
IMS, 26 Nov 2004 36 III. Negative differential thermal resistance/conductance: The physical mechanism ( BLi et al. cond-mat/0410172 )
37
IMS, 26 Nov 2004 37 IV. Thermal transistor: configuration ( BLi et al. cond-mat/0410172 )
38
IMS, 26 Nov 2004 38 IV. Thermal transistor: A switch ( BLi et al. cond-mat/0410172 ) At the three points T G =.04,.09,.14 J G =0 J D =2.4e-6, 1.1e-4, 2.3e-4 2.3e-4/2.4e-6~100
39
IMS, 26 Nov 2004 39 IV Thermal Transistor: Modulator/Amplifier ( BLi et al. cond-mat/0410172 )
40
IMS, 26 Nov 2004 40 IV. Possible nanoscale experiment Temperature (simulation): T ~ (0.1 ~ 1) Real temperature T r ~ (10 ~ 100K) System size: Simulation: Simulation: N ~ (100-1000) Lattice sites Real size: Real size: (10-100nm) Possible nanomaterials Possible nanomaterials: Nanotubes, Nanowires, Thin film ….
41
IMS, 26 Nov 2004 41 III Summary Rectifying effect is very generic in nonlinear lattices. A thermal diode model is proposed. A thermal diode model is proposed. A thermal transistor model is built based on theA thermal transistor model is built based on the negative differential thermal resistance. negative differential thermal resistance. Physical mechanism for the thermal diode/transistor are fully understoodPhysical mechanism for the thermal diode/transistor are fully understood.
42
IMS, 26 Nov 2004 42 1B Li, L Wang, and G Casati, Phys. Rev. Lett. 94 (2005) (in press) cond-mat/0410172 (transistor) 2B Li, L Wang, and G Casati, Phys. Rev. Lett. 93, 184301 (2004) (diode) 3B Li, G Casati, J Wang, and T Prosen, Phys. Rev. Lett. 92, 254301 (2004) 4J.-S Wang and B. Li, Phys. Rev. Lett. 92, 074302 (2004) 5B Li and J Wang, Phys. Rev. Lett 92, 089402 (2004) 6B Li and J Wang, Phys. Rev. Lett 91, 044301 (2003) 7B Li, L Wang, and B Hu Phys. Rev. Lett 88, 223901 (2002) 8B Li, H Zhao, and B Hu Phys. Rev. Lett 87, 069402 (2001) 9B Li, H Zhao, and B Hu Phys. Rev. Lett. 86, 63 (2001) 1B Li, J Wang, L Wang, and G Zhang, CHAOS (FPU’s 50 th focus issue, 2005 March), cond-mat/0410355 2G Zhang and B Li, Phys. Rev. B. cond-mat/0403393 3G Zhang and B Li, Phys. Rev. E. cond-mat/0406498. 4J.-S Wang and B Li, Phys. Rev. E 70, 021204 (2004) 5B Li, G Casati, and J Wang, Phys. Rev. E 67, 021204 (2003) 6B Hu, B Li and H Zhao, Phys. Rev. E 61, 3828 (2000) 7B Hu, B Li, and H Zhao, Phys. Rev. E 57, 2992 (1998) Heat conduction Related Publications
43
IMS, 26 Nov 2004 43 Thank You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.