Presentation is loading. Please wait.

Presentation is loading. Please wait.

PROJECT PLANNING MONTE CARLO SIMULATION Prof. Dr. Ahmed Farouk Abdul Moneim BY Part II.

Similar presentations


Presentation on theme: "PROJECT PLANNING MONTE CARLO SIMULATION Prof. Dr. Ahmed Farouk Abdul Moneim BY Part II."— Presentation transcript:

1 PROJECT PLANNING MONTE CARLO SIMULATION Prof. Dr. Ahmed Farouk Abdul Moneim BY Part II

2 Probability Density Functions Activities Durations : Triangular Truncated Normal Truncated Exponential Truncated Weibull amb t e t MIN t MAX t MIN t MAX t MIN t MAX t t t t Rand 0 ≤ Rand ≤ 1 Φ(Z) Z From Tables OR Excel Normal Distribution Prof. Dr. Ahmed Farouk Abdul Moneim

3 T e T MIN T MAX Truncated Normal Distribution GIVEN a Probability = Rand Find the corresponding value of t t Rand Show that the following function is the right PDF t-Plane Z MIN Z MAX Z Z-Plane 0 f (Z) Z Take the Inverse function of Φ (Φ -1 ) Prof. Dr. Ahmed Farouk Abdul Moneim

4 GIVEN a Probability = Rand Find the corresponding value of t Triangular Distribution amb t Rand If Otherwise H Area of the Triangle = (b-a)*H/2 = 1 Then h Area of the Left part of the Triangle = (m-a)*H/2 = t Rand h 1-Rand Prof. Dr. Ahmed Farouk Abdul Moneim

5 Truncated Exponential Distribution T Min T Max t Consider the following Probability Density Function To show that this is a PDF, the integral over the whole Range R should equal to one Now, find an expression for the mean μ μ - T Min f(t) t Important Notice! For TRUNCATED Exponential Distribution, The following condition SHOULD BE SATISFIED As R tends to Infinity Prof. Dr. Ahmed Farouk Abdul Moneim

6 Truncated Exponential Distribution T Min T Max t f(t) t Rand Prof. Dr. Ahmed Farouk Abdul Moneim

7 Truncated Weibull Distribution Consider the following Probability Density Function T Min t f(t) t Prof. Dr. Ahmed Farouk Abdul Moneim

8 Truncated Weibull Distribution T Min t f(t) t Rand Prof. Dr. Ahmed Farouk Abdul Moneim

9 DistributionGiven DataParametersFormulas Triangulara, m, b m-a, b-a, b-m Truncated Normal μ, σ, T min, T max ** Truncated Exponential T min, T max, μ λ *** Truncated WeibullT min, μ, σ β, η**** *** **** ** From Tables or Excel Prof. Dr. Ahmed Farouk Abdul Moneim

10 SUMMARY Distribution Simulated Time t Truncated Normal Triangular If Otherwise Truncated Exponential Truncated Weibull Prof. Dr. Ahmed Farouk Abdul Moneim

11 Example Activity Predecesso r(s) Distribution G I V E N D A T APARAMETERS ANone Triangular a10m12b14 m-a2 b-a 4 BNone Truncated Normal T min10T max12 μ 6 σ 3 CNone Triangular a6m8b10 D A Truncated Weibull Tmin8 μ 15 σ 4 β 1.812 η 7.874 EB,D Truncated Normal Tmin7Tmax9 μ 8 σ 4 FE Truncated Normal Tmin7Tmax13 μ 10 σ 6 GB,D Truncated Exponential Tmin5Tmax20 μ 6 λ 0.999 85 HF,G Triangular a5m8b11 See Excel Sheet for solution Prof. Dr. Ahmed Farouk Abdul Moneim


Download ppt "PROJECT PLANNING MONTE CARLO SIMULATION Prof. Dr. Ahmed Farouk Abdul Moneim BY Part II."

Similar presentations


Ads by Google