Download presentation
Presentation is loading. Please wait.
Published byDelilah Marley Modified over 9 years ago
1
Complex analysis of waste and industrial materials in the Laboratory of X-Ray Diffraction of ING PAN dr Łukasz Kruszewski
2
Bruker axs D8 ADVANCE
3
Linear Position Sensitive (superfast) detector VÅNTEC-1 LPS detector VÅNTEC vs scintillation det.: ca. 100x better resolution very good peak-to-background intensity ratio 1s/step „standard” counting time 416s/step for VÅNTEC
4
Bruker axs D8 ADVANCE standard qualitative analysis of complex mixtures (ca. 3 min. analysis) quantitative analysis of simple and complex mixtures incl. fly ash, magnetic separates, clinkers, bricks, pyrometallurgic slags etc. (mainly Rietveld method in TOPAS) determination of crystallinity degree and amorphous (glass) phase content; unit cell parameters transmission geometry analysis of polytypes grazing incidence surface facture characteristics thermal chamber real-time phase transition analysis
5
Holders etc.
6
Calibration standards LaB 6
7
Additional equipment
9
TOPAS – a complex tool for PXRD data analysis TOtal Powder Pattern decomposition (math. deconvolution) peak shape and whole profile fitting („repairing”) background corrections (Chebychev polynomials, 1/x function) sample preparation and sample-derived errors (sample displacement, absorption, preferred orientation) instrument-derived errors (zero error, tangential correction, untypical geometry) LaB 6 and Si – based calibration:
10
TOPAS – precise phase input data hkl phase Pawley or LeBail method (unit cell parameters, general fitting) structure phase full structure data (Rietveld quantitative analysis, precise unit cell parameters calculation) peaks phase amorphous phase content determination
11
TOPAS – quantitative analysis – iron-oxide-rich paralava of burning post coal-mining dump calculated unit cell and other parameters Very good fitting result full quantitative result for 11 crystalline species Good background statistics low error
12
TOPAS – quantitative analysis – crystallinity degree amorphous phase content Precise calculation statistics information Goodness of Fit (χ 2 ) Residual – weighted pattern Durbin-Watson statistics
13
TOPAS – quantitative analysis – full text report Quantitative Analysis - Rietveld Phase 1 : "Fayalite magnesian" 30(410) % Phase 2 : Diopside 7(86) % Phase 3 : Hercynite 20(210) % Phase 4 : Hematite 4(51) % Phase 5 : "Bytownite An85" 6(250) % Phase 6 : Magnesioferrite 1(1200) % Phase 7 : Quartz 4(56) % Phase 8 : "Mullite 3:2" 3(33) % Phase 9 : "Tridymite low" 2(22) % Phase 10 : Maghemite 20(230) % Phase 11 : Indialite_KCa 6(85) % Background One on X 1(140000) Chebychev polynomial, Coefficient 0 2400(3600) 1 -200(1800) 2 50(440) 3 20(100) 4 -13(23) Corrections Specimen displacement -0.117(11) LP Factor 0 Absorption (1/cm) 24.5(40) Structure 1 Phase name Fayalite magnesian R-Bragg 0.661 Spacegroup 62 Scale 0.000568(16) Cell Mass 741.5(57) Cell Volume (Å^3) 305.587(76) Wt% - Rietveld 30(410) Crystallite Size Cry Size Lorentzian (nm) 176(20) Crystal Linear Absorption Coeff. (1/cm) 216.1(17) Crystal Density (g/cm^3) 4.029(31) Preferred Orientation (Dir 1 : 3 0 -1) 0.918(14) Lattice parameters a (Å) 10.4423(15) b (Å) 6.07677(92) c (Å) 4.81578(65) Site Np x y z Atom Occ Beq s1 4 0.00000 0.00000 0.00000 FE+2 0.605(37) 0.41 MG+2 0.395(37) 0.41 s2 4 0.28000 0.25000 0.98610 FE+2 0.812(26) 0.36 MG+2 0.188(26) 0.36 s3 4 0.09720 0.25000 0.43070 SI+4 1 0.27 s4 4 0.09200 0.25000 0.76680 O-2 1 0.43 s5 4 0.45310 0.25000 0.21030 O-2 1 0.48 s6 8 0.16530 0.03630 0.28810 O-2 1 0.52
14
TOPAS – quantitative analysis – white clinker (porcellanite) from post coal-mining burning dump
15
TOPAS – quantitative analysis – synthetic mixture: Muscovite 70 Kaolinite 10 Quartz 20 special peak type function used for kaolinite and muscovite: PV_MOD
16
mri Thermal Chamber add
17
mri Thermal Chamber add – RESEARCH (Bruker axs example)
18
Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317 mri Thermal Chamber add – RESEARCH
19
Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317 mri Thermal Chamber add – RESEARCH
20
Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317 mri Thermal Chamber add – RESEARCH
21
FATIGUE BEHAVIOR OF PIEZOELECTRIC CERAMICS MATERIAL - Riffat Asim Pasha 03-UET/PhD-ME-03 mri Thermal Chamber add – RESEARCH
22
RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS. The Canadian Mineralogist, Vol. 43, pp. 1171-1181 mri Thermal Chamber add – RESEARCH
23
RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS. The Canadian Mineralogist, Vol. 43, pp. 1171-1181 mri Thermal Chamber add – RESEARCH
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.