Download presentation
Presentation is loading. Please wait.
Published byChrista Mumby Modified over 9 years ago
1
森 隆志 (名古屋大学) 関西中部地方 B中間子の物理実験研究会@奈良女子大学 2009年11月5日
大学activity: 粒子識別 森 隆志 (名古屋大学) 関西中部地方 2009年11月5日
2
関西中部地方B中間子の物理研究会@奈良女子大学
Contents Introduction R&D of TOP counter components Performance test of prototype R&D of HAPD for A-RICH counter Summary Nov 5, 2009
3
関西中部地方B中間子の物理研究会@奈良女子大学
1. Introduction Nov 5, 2009
4
関西中部地方B中間子の物理研究会@奈良女子大学
1. Our Motivation Upgrade of Belle PID system Current PID system of Belle π/K – separation power : 3σ Current system Barrel: TOF + ACC End cap: ACC Target Performance 3σ ⇒ 4σ (0.6 < p < 4 GeV/c) (ACC: Threshold type Aerogel Cherenkov Counter) Upgrade 2.6m 1.2m e- 8.0GeV e+ 3.5GeV 1.5T Forward Backward Install here Belle-II Barrel: TOP counter End cap: Aerogel RICH 名古屋大学が中心になって 行っている研究について紹介する Nov 5, 2009
5
2. Principle of TOP counter (1)
Imaging with quartz DIRC(Detection of Internally Reflected Cherenkov light) technique Cherenkov radiator + screen (photo-detector matrix) Cherenkov light propagate to terminal of quartz with total reflection Ring image is detect as parabola For same momentum, velocity β of π/K is different different ring images Require large screen Nov 5, 2009
6
2. Principle of TOP counter (2)
TOP(Time Of Propagation) counter Cherenkov radiator + time sensitive screen Position (x, y) ⇒ Position + time (x, t) Very compact & simple 1.18m TOP time includes TOF information TOF y TOP counter measures TOF + RICH z x High performance expected! Nov 5, 2009
7
3. Expected Performance in Belle-II
π/K separation power 4σ for 2<p<4 Expected performance cosθ Forward Backward cosθ Nov 5, 2009
8
4. Typical Ring image & Key Parameters
Top view ~1000mm z 400mm x π/K t x ~100ps Detection position & time Typical ring image Key points Accuracy of quartz radiator ( = lightguide) Cherenkov light should propagate without distortion and attenuation Time resolution and sensitivity of photo-detector To obtain clear ring image Important parameters : Ndet, Nov 5, 2009
9
5. Requirements to Components
Quartz radiator Propagate Cherenkov light without distortion Flatness : < 100μm Right angle accuracy : ~10” Total reflection for suppression of attenuation Surface roughness : 5Å Photo-detector Single photon detection Gain : ~1.0 ×106 Important factor of time resolution of TOP counter TTS : σphotodetector < 40ps Number of detected photon : ~20 QE : Usable in magnetic field of 1.5T for Belle-II Nov 5, 2009
10
2. R&D of TOP Counter Components
Nov 5, 2009
11
関西中部地方B中間子の物理研究会@奈良女子大学
1. Surface Test of Quartz mirror single photon collimator MCP-PMT prism single photon TTS for each incidence point prism line ① line ② line ③ TTS[ps] MCP-PMT quartz ・407nm pulse laser ・Single photon irradiation ・47.2°incidence propagation length[mm] no degradation of TTS ⇒ sufficiently small roughness Nov 5, 2009
12
関西中部地方B中間子の物理研究会@奈良女子大学
2. Photo-detector Requirements Gain : 1.0×106 TTS : <40ps QE : Usable in B -field Square type MCP-PMT Co-development with Hamamatsu Photonics Only photo-detector satisfies requirements MCP-PMT (Micro Channel Plate) Channel ~400m ~10m Channel φ~10μm, Bias angle of MCP : 13° Usable in B-field Nov 5, 2009
13
関西中部地方B中間子の物理研究会@奈良女子大学
3. MCP-PMT R&D Output charge distribution Pedestal Output of single photon Gain ~ 1.0×106 Single photon detection OK Nov 5, 2009
14
関西中部地方B中間子の物理研究会@奈良女子大学
4. MCP-PMT R&D Single photon irradiation 検出時間分布 counts QE[%] σ=34.2±0.4ps transit time [25ps] wavelength [nm] TTS<40ps OK OK Nov 5, 2009
15
3. Performance test of prototype
Nov 5, 2009
16
関西中部地方B中間子の物理研究会@奈良女子大学
1. Beam Test Performed in Jun. & Dec. 2008 Items to confirm Detection of ring image Obtain N(), number of detected photons par track TTS measurement Setup of beam test at Fuji test beam line electron beam (2GeV/c) MCP-PMT Timing Counter MWPC2 MWPC1 Veto counter Trigger TOP Subtract em-shower events Beam trajectory t0 determination Nov 5, 2009
17
関西中部地方B中間子の物理研究会@奈良女子大学
2. Result : ring image Ring image (data) Ring image (simulation) ① ② ④ ③ transit time[25ps] transit time[25ps] ch ch Proper action of total system of TOP counter is confirmed Nov 5, 2009
18
3. Result : number of detected photons
Number of detected photons/events arbitrary N(γ) consistency confirmed Slightly different ⇒ remaining shower event Nov 5, 2009
19
4. Result : transit time distribution
data simulation 1st 2nd 3rd 1st 2nd 3rd カウント数 [photons] ch29 transit time[25ps] transit time[25ps] TTS(1st peak) Data 76.0±2.0 [ps] Simulation 77.7±2.3 [ps] Beam irradiation point (875mm) 875mm 915mm quartz 3rd 2nd 1st We confirmed consistency of transit time distributions for beam test & simulation Nov 5, 2009
20
関西中部地方B中間子の物理研究会@奈良女子大学
2.6m 1.2m e- 8.0GeV e+ 3.5GeV 1.5T Forward Backward Aerogel RICH 4. R&D of hapd for A-RICH Nov 5, 2009
21
関西中部地方B中間子の物理研究会@奈良女子大学
1. Aerogel RICH counter Nov 5, 2009
22
関西中部地方B中間子の物理研究会@奈良女子大学
2. HAPD R&D 73mm Photo-detection in Magnetic field Single photon irradiation Hybrid structure Vacuum tube APD (5x5mm2 matrix) Bialkali photocathode ~104 total gain Confirmed Single photon detection Available in 1.5T B-field Current issue Radiation hardness (neutron) study Photocathode study Nov 5, 2009
23
関西中部地方B中間子の物理研究会@奈良女子大学
5. Summary & Issues Our Motivation: upgrade of PID system Target performance: separation power 3σ⇒4σ Idea: barrel ⇒ TOP, end cap ⇒ Aerogel RICH TOP counter New idea of RICH: Position(x, y) Position(x) + time(=TOF+RICH) Basic performances are confirmed with prototype Issue Structure, reconstruction code, lifetime of PMT, readout, etc… HAPD R&D Performances are available for ARICH Neutron hardness, high QE photocathode study Nov 5, 2009
24
関西中部地方B中間子の物理研究会@奈良女子大学
Backup Nov 5, 2009
25
関西中部地方B中間子の物理研究会@奈良女子大学
Belle-II experiment Belle detector e+e- asymmetric collider e+ : 3.5GeV e- : 8.0GeV e+e- → Υ(4S) → BB π/K-ID is important for flavor tagging Our target of development : Belle-II experiment Higher statistics: Higher luminosity ×~40 B-factory ⇒Super B-factory & Higher accuracy : Belle detector upgrade Nov 5, 2009
26
関西中部地方B中間子の物理研究会@奈良女子大学
History of R&D Butterfly TOP Nov 5, 2009
27
Performance Parameterization
Separation power : : Difference of TOF +TOP for π/K(~ 60ps) timing 1m assumption : Detected photons/track(~20) : TTS of TOP counter : TTS of photo-detector(~40ps) : Chromatic dispersion (1m propagation in quartz: ~50ps ⇒ 25ps) Can suppress with λ cut filter Important parameters : Ndet, σphotodetector Nov 5, 2009
28
Chromatic Dispersion Chromatic dispersion Restricts TOP TTS
wavelength [nm] number of detected photons Typical wavelength distribution of detected photons Typical wavelength distribution of group velocity of light group velocity of light [m/ns] wavelength [nm] Restricts TOP TTS This is because refraction index has wavelength dependence Nov 5, 2009
29
Suppression of Chromatic Dispersion
Wavelength cut Suppression of chromatic dispersion with 350nm wavelength cut filter 350nm Group velocity of light σchromatic 50 25ps Number of Cherenkov photons wavelength cut ⇒ TTS improve Transmittance of wavelength cut filter ⇒ fine tune Ndet decrease Nov 5, 2009
30
関西中部地方B中間子の物理研究会@奈良女子大学
1. Radiator Quartz (fused silica) Size : 915×400×20 (mm3) Weight :16kg Flatness : < 1.2μm/m Surface roughness :5Å Refractive index :1.45 Co-development with Okamotokougaku Nov 5, 2009
31
Construction of Prototype
Al honeycomb Quartz Spring loaded polyathetal head plunger×40/surface Distortion of frame is absorbed by spring Cross section of radiator part 23mm 46 mm Al honeycomb support Core density:0.037g/cm3 Thickness : 10mm Surface plate : 0.3mm Al Sag :δ < 80μm Quartz flatness in Frame <100μm/m (Measured) PMT array with λ cut filter Schematic side view of PMT array Readout-box PMT Joint of 2 parts Optical contact : silicon oil + pressure Nov 5, 2009
32
関西中部地方B中間子の物理研究会@奈良女子大学
PMT module HV divider + AMP + Discriminator Small size (28mmW) Prototype Fast AMP (MMIC, 1GHz, x20) Fast comparator (180ps propagation) CFD with pattern delay Performance Test pulse ~5ps resolution MCP-PMT s<40ps Working well AMP+CFD comparator amp input low voltage supply to TDC to ADC Nov 5, 2009
33
2. Performance Confirmation by Beam Test
Items to confirm Detection of the ring image of the Cherenkov light Obtain N(), the number of detected photons par track Measure the TTS MC simulation Ring image Number of detected photons Ndet = 16 TTS for 1st surface of ring image = 78 [ps] transit time[25ps] ch Demonstration of the TOP counter with MCP-PMT array Nov 5, 2009
34
関西中部地方B中間子の物理研究会@奈良女子大学
Set up for Beam Test Quartz + MCP-PMT Fuji test beam line at KEK TOP Counter MWPC② y y electron beam (2GeV/c) x Timing Counter Trigger Counter x MWPC① Beam trajectory MCP-PMT Veto counter t0 determination Subtract em-shower events Nov 5, 2009
35
関西中部地方B中間子の物理研究会@奈良女子大学
σ=13.4±0.7ps transit time[25ps] counts TTS of timing counter Nov 5, 2009
36
関西中部地方B中間子の物理研究会@奈良女子大学
伝播距離によって時間分解能はどれだけ悪化するか? 波長分散効果を考慮した理解は正しいのか? シミュレーション 時間分解能[ps] 伝播距離 [mm] 各伝播距離における測定結果が シミュレーションを再現 波長分散効果が予想通り のものであることを確認 Nov 5, 2009
37
関西中部地方B中間子の物理研究会@奈良女子大学
Nov 5, 2009
38
Summary for TOP Counter
TOP counter is very compact & simple detector based on TOF + RICH technique Radiator propagates Cherenkov light without distortion Position(x, y) Position(x) + time (= TOF + TOP) Target performance of TOP counter >4σ for 0.6 < p < 4GeV/c Key parameters Number of detected photons Prototype of TOP counter has been constructed We confirmed basic performances of prototype with following parameters: Quartz MCP-PMT Flatness : 1.2 μm/m Gain : ~1.0 × 106 Roughness : 5Å TTS : < 40ps Shape accuracy : 10” QE : > 400nm Nov 5, 2009
39
関西中部地方B中間子の物理研究会@奈良女子大学
Nov 5, 2009
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.