Download presentation
1
Matter and Minerals
2
Matter Elements and the Periodic Table
Elements are the basic building blocks of minerals. Over 100 elements are known.
3
Matter Atoms Smallest particles of matter
Have all the characteristics of an element The nucleus is the central part of an atom and contains protons, which have positive electrical charges neutrons, which have neutral electrical charges
4
Matter Atoms Energy levels, or shells
surround the nucleus contain electrons—negatively charged particles The atomic number is the number of protons in the nucleus of an atom.
5
Model of an Atom
6
Isotopes Matter Isotopes of an element have the same number of protons but varying numbers of neutrons. Have different mass numbers: the sum of the neutrons plus protons Many isotopes are radioactive and emit energy and particles. The mass number is the number of neutrons and protons in the nucleus of an atom.
7
Why Atoms Bond Matter When an atom’s outermost energy level does not contain the maximum number of electrons, the atom is likely to form a chemical bond with one or more atoms. A compound consists of two or more elements that are chemically combined in specific proportions. An ion is an atom that gains or losses electrons.
8
Matter Types of Chemical Bonds
1. Ionic bonds form between positive and negative ions. 2. Covalent bonds form when atoms share electrons. 3. Metallic bonds form when metal ions share electrons.
9
Minerals: the building blocks of rocks
Definition of a Mineral: naturally occurring inorganic solid characteristic crystalline structure definite chemical composition
10
How do we identify minerals?
Physical properties: Color Luster Hardness Crystal shape Cleavage Specific gravity Other
11
Physical Properties of Minerals
Color: Most obvious, but often misleading Different colors may result from impurities Example: Quartz
12
Physical Properties of Minerals
Color: Streak – color of a mineral in powdered form (used for metallic minerals) Obtained by scratching a mineral on a piece of unglazed porcelain. Example: Hematite
13
Streak Red chalk on a chalk board makes red marks. White chalk makes white marks. Not all minerals work this way. When some minerals are scratched along a ceramic streak plate, it creates a different color.
14
Gold When gold is run across a streak plate it makes a yellowish-gold color. That makes sense.
15
Pyrite or “Fool’s Gold”
When pyrite is run across a streak plate, it has a black or dark green streak. Pyrite is not worth much money, while gold is worth a lot. They look alike, so miners call it fool’s gold.
16
Hematite Hematite’s color is grey, but its streak is red.
Hema means blood. The mineral was named hematite because it looked like it was bleeding when it was taken across a streak plate.
17
One mineral property we will not use…
COLOR
18
A mineral can be many different colors. Below is Mica.
19
Many minerals can be the same color. Below are gold colored minerals
Many minerals can be the same color. Below are gold colored minerals. Which one is gold?
20
None of them were real gold.
The answer… None of them were real gold.
21
Just like with people… Outside color does not tell you much about the important characteristics.
22
Physical Properties of Minerals
Luster: How a mineral surface reflects light Two major types: Metallic luster Non-metallic luster Metallic example: Galena Non-metallic example: Orthoclase
23
Pyrite (Fool’s Gold) Displays Metallic Luster.
24
Physical Properties of Minerals
Hardness: How easy it is to scratch a mineral Mohs Scale of Hardness relative scale consists of 10 minerals, ranked 1 (softest) to 10 (hardest)
25
Mohs Scale of Hardness Hardest (10) – Diamond Softest (1) – Talc
Common objects: - Fingernail (2.5) - Copper penny (3.5) - Wire nail (4.5) - Glass (5.5) - Streak plate (6.5)
26
Hardness Is measured by how easy it is to scratch.
Geologists order the hardness by… Scratched by a fingernail. Scratched by a penny. Scratched by a nail. Scratched by a diamond. These are not all of the tools geologists use, but it will work for our experiment.
27
Gypsum is soft, it can be scratched by a fingernail.
28
Calcite is soft, but a little harder because it cannot be scratched by a fingernail, but it can be scratched by a penny.
29
Fluorite is harder. It can be scratched by a nail, but not a penny or fingernail.
30
Diamonds are the hardest mineral, so it scratches every mineral.
31
Physical Properties of Minerals
Crystal shape (or form): external expression of a mineral’s internal atomic structure planar surfaces are called crystal faces angles between crystal faces are constant for any particular mineral Quartz Pyrite
32
Physical Properties of Minerals
Cleavage vs. Fracture: The way a mineral breaks Cleavage: tendency of a mineral to break along planes of weakness Minerals that do not exhibit cleavage are said to fracture Do not confuse cleavage planes with crystal faces! Crystal faces are just on the surface and may not repeat when the mineral is broken.
33
Physical Properties of Minerals
Cleavage is described by: Number of planes Angles between adjacent planes These are constant for a particular mineral
34
Physical Properties of Minerals
Cleavage (1 direction): Example: mica
35
Mica Has Cleavage in One Direction
36
Physical Properties of Minerals
Cleavage (2 directions): orthoclase amphibole
37
Physical Properties of Minerals
Cleavage (3 directions): halite calcite
38
Physical Properties of Minerals
Cleavage (4 directions): fluorite
39
Physical Properties of Minerals
Fracture: minerals that do not exhibit cleavage are said to fracture smooth, curved surfaces when minerals break in a glass-like manner: conchoidal fracture Quartz
40
Conchoidal Fracture
41
Physical Properties of Minerals
Specific gravity: weight of a mineral divided by weight of an equal volume of water metallic minerals tend to have higher specific gravity than non-metallic minerals Galena SG=7.5 Quartz SG=2.67
42
Physical Properties of Minerals
Other properties: reaction with hydrochloric acid (calcite fizzes) taste (halite tastes salty) feel (talc feels soapy, graphite feels greasy) magnetism (magnetite attracts a magnet)
43
Mineral Groups Rock-forming minerals
~30 common minerals make up most rocks in Earth’s crust Composed mainly of the 8 elements that make up over 98% of the crust
44
SILICATES Mineral Groups Common cations that bond with silica anions
Element Abundances Silica (SiO4)4- SILICATES Common cations that bond with silica anions All others: %
45
Mineral Groups Silicates (most abundant)
Non-silicates (~8% of Earth’s crust) Oxides O2- Carbonates (CO3)2- Sulfides S2- Sulfates (SO4)2- Halides Cl-, F-, Br- Native elements (single elements; e.g., Au)
46
Mineral Groups Non-ferromagnesian Silicates (K, Na, Ca, Al)
Silicates (Fe, Mg) Oxides Carbonates Sulfides/sulfates Native elements
47
Mineral Groups – Silicates
Tetrahedron fundamental building block 4 oxygen ions surrounding a much smaller silicon ion Silicon-oxygen tetrahedron (SiO4)4-
48
Mineral Groups – Silicates
Joining Silicate Structures How tetrahedra may be linked: independent tetrahedra single chains double chains sheets 3-D framework
49
Mineral Groups – Silicates –
50
Mineral Groups – Silicates
Olivine Group dark silicates (Fe-Mg) ferromagnesian No cleavage
51
Mineral Groups – Silicates
Pyroxene Group Ferromagnesian / dark silicates (Fe-Mg) Augite 2-directions of cleavage (at nearly 90 degrees)
52
Mineral Groups – Silicates
Amphibole Group Ferromagnesian / dark silicates (Ca, Fe-Mg) Hornblende 2-directions of cleavage (not at 90 degrees)
53
Mineral Groups – Silicates
Mica Group and Clay Minerals light silicates (K, Al) non-ferromagnesian Muscovite 1-direction of cleavage
54
Mineral Groups – Silicates
Feldspar Group light silicates (K-Na-Ca, Al) K-feldspar Most common mineral group Orthoclase Plagioclase 2-directions of cleavage (at 90 degrees) Ca/Na-feldspar
55
Mineral Groups – Silicates
Quartz light silicates (pure SiO2) no cleavage (conchoidal fracture) hard, resistant to weathering Quartz
56
Minerals Mineral Groups 2. Carbonates 3. Oxides
Minerals that contain the elements carbon, oxygen, and one or more other metallic elements 3. Oxides Minerals that contain oxygen and one or more other elements, which are usually metals
57
Minerals Mineral Groups 4. Sulfates and Sulfides 5. Halides
Minerals that contain the element sulfur 5. Halides Minerals that contain a halogen ion plus one or more other elements 6. Native elements Minerals that exist in relatively pure form
58
Sulfides
59
Native Copper
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.