Presentation is loading. Please wait.

Presentation is loading. Please wait.

Biophysics Master Course, Fall 2002 Some of the physics cells have to deal with: Random walks, diffusion and Brownian motion.

Similar presentations


Presentation on theme: "Biophysics Master Course, Fall 2002 Some of the physics cells have to deal with: Random walks, diffusion and Brownian motion."— Presentation transcript:

1 Biophysics Master Course, Fall 2002 Some of the physics cells have to deal with: Random walks, diffusion and Brownian motion

2 Background reading: — Frederick Reif: Statistical and Thermal Physics, Chpt. 1 (random walks), Chpt. 15 (fluctuations, Brownian motion) — Howard Berg: Random Walks in Biology, Chpts. 1, 2 (diffusion), Appendix A (distributions) — Jonathon Howard, Mechanics of Motor Proteins and the Cytoskeleton, Chpt. 4 (diffusion), Chpt. 16 (motor models) — Richard Feynman, Feynman Lectures I, Chpt 41 (Brownian motion), Chpt. 46 (thermal ratchet) — Landau, Lifschitz, Volume V, Statistical Physics, Chpt. 12 (fluctuations, pretty advanced) — Frederick Gittes, Christoph Schmidt, Signals and noise in micromechanical measurements. In Laser Tweezers in Cell Biology. Methods in Cell Biology, 55: 129-156, Academic Press, San Diego, CA, 1998 (power spectral analysis). — Gittes, F., Schmidt, C.F. (1998), Thermal Noise Limitations on Micromechanical Experiments, Eur. Biophys. J., 27: 75-81 (spectral analysis, other noise)

3 Optical trapping of 0.2 µm silica beads in water

4 Bacterial motility, E. coli from Howard Berg lab, courtesy Linda Turner

5 Intracellular transport in Reticulomyxa, video: M. Schliwa, M. Koonce

6

7 2D random walk, 18050 steps

8 Intracellular Transport on Cytoskeletal Tracks 1 m Cell Body Synapse Axon Vesicles with motors Active transport: v ≈ 1µm/s, T ≈ 10 days Diffusion: T = x 2 /6D ≈ 26,000 years Microtubules

9 The Main Motor Protein Families (asymmetric) track: actin filaments, microtubules Cargo: Vesicles, Organelles Motors: myosins, kinesins, dyneins Fuel: ATP

10 The Feynman Thermal Ratchet P forward ~exp(-  /kT 1 ) P backward ~exp(-  /kT 2 ) works only if T 1 >T 2 !! motor protein conformational change: µs decay of temperature gradient over 10 nm: ns wrong model  rel ≈ Cl 2 /(4  2  )

11 Brownian Ratchet (A.F. Huxley ‘57) Cargo Thermal motion Track Net transport perpetuum mobile? Not if ATP is used to switch the off-rate. Motor

12 Three-bead assay with ncd

13 Myosin: averaged power strokes (Veigel et al. Nature ‘99, 398, 530)

14 Myosin Power Stroke Mechano-chemical cycle: M*ATP M*ADP*Pi M attach working stroke detach recovery stroke ADP +P i ADP PiPi actin myosin

15 Conformational Change of Single ncd Molecule release DeCastro, Fondecave, Clarke, Schmidt, Stewart, Nature Cell Biology (2000), 2:724 ADP ADP*P i ~ 7 nm

16

17 Stepping and Stalling of a Single Kinesin Molecule ~ 6 pN stall force ~ 8 nm steps Svoboda, Schmidt, Schnapp, Block, Nature (1993), 365: 721

18 - 2 Randomness parameter r:= lim t -> ∞ d 1 -> 2 -> 3 -> 4 -> 5 -> 6 kkkkk r = 0 r = 1 1 -> 2 k  t=const. “clockwork”  t exponentially distributed Poisson process

19 Randomness parameter for single kinesin (Visscher,Schnitzer, Block (‘99), Nature 400, 184)

20 Time series: Spectrum:

21 Efficiency, Invertability and Processivity of Molecular Motors F. Jülicher, Institut Curie, Paris http://www.curie.fr/~julicher A. Parmeggiani L. Peliti (Naples) A. Ajdari (Paris) J. Prost (Paris)

22 Mechano-chemical coupling M M-ADP M-ADP-P M-ATP mean velocity 1 2 3 4 x

23 Example: weakly bound state ATP ADP-P ADP strongly bound weakly bound

24 Example: identical shifted states l a U chemical free energy of hydrolysis:

25 Dissipation rates motion within a state: chemical transitions: total internal dissipation of the motor:

26 Efficiency of energy transduction force chemical energy velocity chemical rate A. Parmeggiani, F. Jülicher, A. Ajdari and J. Prost, PRE 60, 2127 (1999) Energy conservation: chemical work mechanical work total internal dissipation


Download ppt "Biophysics Master Course, Fall 2002 Some of the physics cells have to deal with: Random walks, diffusion and Brownian motion."

Similar presentations


Ads by Google