Download presentation
1
The Values of sin , cos , tan
2
The Values of sin , cos , tan
Quadrants and angles in the unit circle y Cartesian plane can be divided into four parts called quadrants. Quadrants are named in the anticlockwise direction. 0° 90° 180° 270° 360° Quadrant I Quadrant II Quadrant III Quadrant IV x
3
The Values of sin , cos , tan
Quadrants and angles in the unit circle y Angle is measured by rotating the line OP in the anticlockwise direction from the positive x-axis at the origin, O. P x O
4
The Values of sin , cos , tan
Verify sin = y-coordinate in quadrant I of the unit circle y sin = = = y P (x, y) 1 y x x O Q sin = y-coordinate
5
The Values of sin , cos , tan
Verify cos = x-coordinate in quadrant I of the unit circle y cos = = = x P (x, y) 1 y x O x Q cos = x-coordinate
6
The Values of sin , cos , tan
Verify tan = in quadrant I of the unit circle y tan = = P (x, y) 1 y x O x Q tan =
7
The Values of sin , cos , tan
Determine whether the value is positive or negative y x Quadrant I = All positive sin All Quadrant II = sin positive II I III IV Quadrant III = tan positive tan cos Quadrant IV = cos positive
8
The Values of sin , cos , tan
Determine whether the value is positive or negative Example 1: sin 213° Sin is positive in quadrant II. y The angle 213° lies in quadrant III. 213° x O Therefore, the value of sin 213° is negative. Not quadrant II
9
The Values of sin , cos , tan
Determine whether the value is positive or negative Example 2: cos 321° Cos is positive in quadrant IV. y The angle 321° lies in quadrant IV. 321° x O Therefore, the value of cos 321° is positive. It is quadrant IV.
10
The Values of sin , cos , tan
Determine whether the value is positive or negative Example 3: tan 123° Tan is positive in quadrant III. y The angle 123° lies in quadrant II. 123° x O Therefore, the value of tan 123° is negative. Not quadrant III
11
The Values of sin , cos , tan
Determine whether the value is positive or negative Example 4: sin 32° All positive in quadrant I. y The angle 32° lies in quadrant I. 32° x O Therefore, the value of sin 32° is positive. It is quadrant I.
12
The Values of sin , cos , tan
Determine the values of sine, cosine and tangent for special angles sin 45° = 45° 1 cos 45° = tan 45° = 1
13
The Values of sin , cos , tan
Determine the values of sine, cosine and tangent for special angles sin 30° = 30° 60° 1 2 cos 30° = tan 30° =
14
The Values of sin , cos , tan
Determine the values of sine, cosine and tangent for special angles sin 60° = 30° 60° 1 2 cos 60° = tan 60° =
15
The Values of sin , cos , tan
Determine the values of sine, cosine and tangent for special angles 0° 90° 180° 270° 360° sin 1 –1 cos tan y x O (0, 1) (–1, 0) (1, 0) (0, –1)
16
The Values of sin , cos , tan
Determine the values of sine, cosine and tangent for special angles Summary: 0° 30° 45° 60° 90° 180° 270° 360° sin 1 –1 cos tan
17
The Values of sin , cos , tan
Determine the values of sine, cosine and tangent for special angles Question 1: Calculate the values of the following: 7 sin 90° + 4 cos 180 ° Solution: 7 sin 90° + 4 cos 180 ° = 7 × (1) + 4 × (–1) = 7 – 4 = 3
18
The Values of sin , cos , tan
Values of angles in quadrant II y x O P = corresponding angle in quadrant I between x-axis and line OP
19
The Values of sin , cos , tan
Values of angles in quadrant II where = 180° – sin = + sin cos = – cos tan = – tan y P x O X = – 90°
20
The Values of sin , cos , tan
Values of angles in quadrant III where = – 180° sin = – sin cos = – cos tan = + tan y x P O X = 270° –
21
The Values of sin , cos , tan
Values of angles in quadrant IV where = 360° – sin = – sin cos = + cos tan = – tan y x O X P = – 270°
22
The Values of sin , cos , tan
Finding the value of an angle Question 1: Find the value of sin 231°. Solution: y x O 231° quadrant III sin 231° negative sin 231° = – sin (231° – 180°) 231° = – sin 51° = – P
23
The Values of sin , cos , tan
Finding the value of an angle Question 2: Find the value of cos 303° 17‘. Solution: x y O 303° 17' quadrant IV cos 303° 17' positive cos 303° 17' = cos (360° – 303° 17') 303° 17' = cos 56° 43' = P
24
The Values of sin , cos , tan
Finding the value of an angle Question 3: Find the value of tan 117° 13'. Solution: x y O 117° 13' quadrant II P tan 117° 13' negative tan 117° 13' = – tan (180° – 117° 13') 117° 13' = – tan 62° 47' = – 1.945
25
The Values of sin , cos , tan
Finding angles between 0° and 360° Question 1: For sin x = where 0° ≤ x ≤ 360°, find the value of x. Solution: 72° x P y x y Corresponding acute angle, x = 72° x O 72° P positive Therefore, the acute angle is in quadrant I or II. and Quadrant I: x = 72° Quadrant II: x = 180° – 72° = 108°
26
The Values of sin , cos , tan
Finding angles between 0° and 360° Question 2: For tan x = – where 0° ≤ x ≤ 360°, find the value of x. Solution: Corresponding acute angle, x = 60° 12' x y x y – negative 60° 12' O P x 60° 12' P x Therefore, the acute angle is in quadrant II or IV. and Quadrant II: x = 180° – 60° 12' = 119° 48' Quadrant IV: x = 360° – 60° 12' = 299° 48'
27
The Values of sin , cos , tan
Finding angles between 0° and 360° Question 3: For cos x = 0.5 where 0° ≤ x ≤ 360°, find the value of x. Solution: x y x y Corresponding acute angle, x = 60° 60° P x 60° O P x 0.5 positive Therefore, the acute angle is in quadrant I or IV. and Quadrant I: x = 60° Quadrant IV: x = 360° – 60° = 300°
28
The Values of sin , cos , tan
Solve problems involving sine, cosine and tangent Question: In the diagram below, HMS and JHN are straight lines. H is the midpoint of JN. Given that HM = 12 cm, MN = 13 cm and FJ = 4 cm, calculate: the length of HN, the value of cos x°, the value of tan y°. N H M S J F y° x°
29
The Values of sin , cos , tan
Solve problems involving sine, cosine and tangent Solution: (a) N Pythagoras’ theorem HN2 = 132 – 122 13 cm x° = 169 – 144 = 25 y° S H 12 cm M HN = 5 cm F J 4 cm
30
The Values of sin , cos , tan
Solve problems involving sine, cosine and tangent Solution: HMS is a straight line (b) N x° = 180° – HMN x° cos x° = – cos HMN y° S H M = F J
31
The Values of sin , cos , tan
Solve problems involving sine, cosine and tangent Solution: JHN is a straight line (c) N y° = 180° – FHJ x° tan y° = – tan FHJ y° S H M = F J
32
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.