Presentation is loading. Please wait.

Presentation is loading. Please wait.

Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua 2010.4.24.

Similar presentations


Presentation on theme: "Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua 2010.4.24."— Presentation transcript:

1 Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua 2010.4.24

2

3

4 First Intermolecular Carbon-Nitrogen Bond Formation In 1983 Kosugi et al. published report of intermolecular carbon-nitrogen bond formation. Only electron neutral aryl bromides gave products in good yields. Vinyl Bromides and aryl bromides containing electron donating or electron withdrawing groups gave products in low yields. Only Unhindered dialkyl amides gave good yields of amination products. M. Kosugi, M. Kameyama, T. Migita, Chem. Lett. 1983, 927

5 First Intramolecular Carbon-Nitrogen Bond formation First example of palladium(0) mediated carbon-nitrogen bond formation using stoichiometric quantities of palladium(0) was reported by Boger in 1984 eq. Pd(PPh 3 ) 4 SolventTemperature/ o CTime/hYield/% 1.0THF(sealed tube)802050 1.2THF(sealed tube)802181 1.5THF(sealed tube)802184 1.2Dioxane1002050 1.5Dioxane1002473-80 1.2Toluene1002443 0.01THF(sealed tube)80240 D. L. Boger, J. S. Panek, Tetrahedron Lett. 1984, 3175

6 Catalytic examples using amino stanannes Work reported by S. Buchwald: Examples: A. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. 1994, 7901.

7 Catalytic examples using amino stanannes Work reported by J. Hartwig: Catalytic cycle: F. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1998, 5969. A lot of advantages !

8 Achieving the Same Chemistry Without the use of Tin Reagents Work reported by J. Hartwig: Catalytic cycle: J. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 3609.

9 Achieving the Same Chemistry Without the use of Tin Reagents Work reported by S. Buchwald: Tested a variety of aryl iodides with primary and secondary amines: Good yields for all, 59-79%. J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1996, 1133.

10 Catalyst Development Buchwald found dramatic improvements in yield and substrate generality by using BINAP as the ligand Catalyst loadings are also significantly reduced Compared with 35% when using P(o-tolyl) 3 and R = n-hexyl RMol% PdReaction time/hYield/% n-hexyl0.5288 Bn0.5479 Bn0.05779 Cyclohexyl0.51883 J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc. 1996, 7215.

11 BINAP Reaction Mechanism

12 Catalyst development Hartwig developed a dppf based system that shows enhanced catalytic qualities Good for primary amines and works on electron deficient aryl halides M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 1133.

13 Coupling of Secondary Acyclic Amines LigandTime/hIsolated yield/% P(o-tolyl) 3 4877 BINAP48- DPPF48- (rac)-BPPFA48- FcPPh 2 48- (rac)-PPFA2489 (rac)-PPF-OMe593 J. Marcoux, S. Wagaw, S. L. Buchwald, J. Org. Chem. 1997, 1568.

14 Coupling of Aryl Triflates Buchwald: Hartwig: Both systems use electron rich and electron poor aryl triflates with primary and secondary amines (cyclic and acyclic) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1997, 1264. J. Louie, M. S. Driver, B. C. Hamann, J. F. Hartwig J. Org. Chem. 1997, 1268.

15 Intermolecular Markovnikov Hydroamination of vinylarenes with alkylamines Via: Products formed in 43-79 % yield M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2003, 14286.

16 Synthesis of Enamines and Imines Examples: M. Fernández, F. Aznar, C. Valdés, J. Barluenga, Chem. Eur. J. 2004, 494.

17 Scope and Limitations of the Pd/BINAP-Catalyzed Amination of Aryl Bromides John P. Wolfe, Stephen L. Buchwald. J. Org. Chem. 2000, 65, 1144-1157 Catalytic Amination of Aryl Bromides Using NaO-t-Bu as the Base. Note: When the weak base Cs 2 CO 3 is employed, a much wider variety of functional groups are tolerated.

18 Tanoury, G. J. Senanayake. Tetrahedron Lett. 1998, 39, 6845 Application In The Synthesis

19 Hong. Y. Tetrahedron Lett. 1998, 39, 3121 Selective Cross-Coupling Using BINAP

20 Stephen L. Buchwald. J. Am. Chem. Soc. 2003, 125, 6653-6655

21 Jacqueline E. Milne, Stephen L. Buchwald. J. Am. Chem. Soc. 2004, 126, 13028-13032

22

23 Eric R. Strieter, Stephen L. Buchwald. Angew. Chem. Int. Ed. 2006, 45, 925 –928 Catalyst Activation Mechanism

24 Stephen L. Buchwald. J. Am. Chem. Soc. 2007, 129, 13001-13007

25 A New Class of Air- and Moisture- stable Pd Precatalysts They are particularly useful in cases where a highly active Pd complex is required to promote a difficult cross-coupling reaction or where functional group instability requires the use of low temperatures. Mark R. Biscoe, Brett P. Fors, Stephen L. Buchwald. J. Am. Chem. Soc. 2008, 130, 6686–6687

26 Chemoselective Cross-coupling Reactions Debabrata Maiti and Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 17423–17429

27

28

29 Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 16720–16734

30 Kelvin Billingsley, Stephen L. Buchwald. J. Am. Chem. Soc. 2007, 129, 3358 3366 Application In Suzuki-Miyaura Reaction Reduce the loading of catalyst !

31 Brett P. Fors, Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 12898–12899

32 First, the dative ancillary ligands can be displaced by ammonia to form a catalytically unreactive complex. Second, reductive elimination from an Ar-Pd-NH 2 complex has never been observed, perhaps because complexes of the parent amido group often adopt stable bridging structures. Third, if reductive elimination did form the arylamine, this product would likely be more reactive than ammonia and would further react to form the diarylamine. Cross-coupling Reaction With Ammonia Difficulties Suffered:

33 Qilong Shen and John F. Hartwig. J. Am. Chem. Soc. 2006, 128, 10028-10029

34 (i) many kinds of transition metals are deactivated by ammonia to give stable amine complexes and (ii) when a reaction forms a primary amine, this product is more reactive than ammonia and causes problematic overreactions. It is noteworthy that the use of aqueous ammonia is essential and that ammonia gas did not react at all !. Takashi Nagano and Shu Kobayashi. J. Am. Chem. Soc. 2009, 131, 4200–4201

35

36 Palladium-Catalyzed Asymmetric Dearomatization of Naphthalene Derivatives Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 6676–6677

37

38 Conclusion First-generation catalyst: Pd/P(o-tolyl) 3 Second-generation catalyst: Pd/aromatic phosphines Third-generation catalyst: Pd/Hindered alkylphosphines BINAPDPPF

39 1.One kind of the Buchwald-Hartwig cross-coupling reaction substrates must be aryl halides and aliphatic halides have not been reported. 2. It will be paid more attention to its use in asymmetric synthesis.


Download ppt "Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua 2010.4.24."

Similar presentations


Ads by Google