Download presentation
Presentation is loading. Please wait.
1
OSMOREGULATION & EXCRETION
Chapter 44
2
OVERVIEW Osmoregulation Excretion
Relative concentrations of water and solutes must be maintained in a variety of environments (land, freshwater, marine) Excretion Metabolism creates waste that must be expelled from the body Proteins and nucleic acids present a problem because ammonia (primary waste product) is toxic
3
44.1 ~ OSMOREGULATION Balancing the uptake and loss of water and solutes over time. If they don’t osmosis will cause animal cells to swell and burst or shrivel and die. Isoosomotic = two solutions with the same osmolarity Hyperosmotic = solution with the greater concentration of solutes Hyposomotic = solution with the more dilute concentration of solutes Water flows from a hyposomotic solution to a hyperosmotic one.
4
TWO BASIC SOLUTIONS #1 (only available to marine animals) is to be isoosomotic with the environment. Osmoconformer Does not adjust its internal osmolarity Live in water that is fairly stable #2 (available to any animal) is to control its internal osmolarity because body fluids are NOT isoosmotic with the outside environment. Osmoregulator Body fluids are not isoosomotic with surroundings Enables animals to live in diverse environments Has an energy cost (active transport of solutes)
5
COST OF OSMOREGULATION
Depends on: How different osmolarity is from the surroundings How easily water & solutes move across the animal’s surface How much work is required to pump solutes across the membranes Ranges from 5% to 30% of total resting metabolic rate
6
STENOHALINE VS. EURYHALINE
Stenohaline – narrow salt; Most animals cannot tolerate substantial changes in external osmolarity Euryhaline – broad salt; Animals that can survive large fluctuations in external osmolarity. Examples: Salmon, Talapia
7
MARINE ANIMALS Most marine invertebrates are osmoconformers
Marine vertebrates and some invertebrates are osmoregulators Ocean is strongly dehydrating because it is much saltier than than internal fluids and water is lost by osmosis Balance water loss by drinking large amounts of seawater Salt is actively pumped out of gills and passed through urine
8
FRESHWATER ANIMALS Problems are opposite those of marine animals
Freshwater animals are constantly gaining water by osmosis and losing salt by diffusion Maintain water balance by excreting large amounts of very dilute urine and taking in salt by the gills
10
TEMPORARY WATERS Anhydrobiosis “life without water” – animals can survive in a dormant state when their habitats dry up Water bears Survive for a decade or more in inactive state
11
LAND ANIMALS Desiccation “drying up” is a huge problem for land animals Adaptations that help land animals avoid drying up: Waxy layers of insects exoskeleton Shells of land snails Layers of dead keratinized skin Nocturnal Drinking and eating moist foods Using metabolic water (water produced during cellular respiration)
12
44.2 ~ NITROGENOUS WASTES When proteins and nucleic acids are broken down nitrogenous wastes are produced When these macromolecules are broken apart for energy ammonia (NH3) is produced which is very toxic Three forms of ammonia that animals secrete Ammonia Urea Uric acid
13
AMMONIA Very soluble but only tolerated at low concentrations so must be released in lots of water Aquatic species (fish)
14
UREA Substance produced in the vertebrate liver by metabolic cycle that combines ammonia with carbon dioxide System carries urea to kidneys where it is excreted Mammals, adult amphibians, sharks, marine bony fishes, turtles Advantage: low toxicity and requires less water Disadvantage: expend energy to produce it from ammonia
15
URIC ACID Largely insoluble in water and can be excreted as a semi solid paste with very little water loss Insects, land snails, reptiles, birds Relatively non-toxic Requires considerable ATP to produce (more than Urea)
17
EVOLUTION & ENVIRONMENT ON WASTE
Uric acid can be stored within the reptilian egg as a harmless solid left behind when the animal hatches Type of waste produced by vertebrates depends on habitat
18
44.3 ~ STEPS OF URINE PRODUCTION
1. Filtration – body fluids are filtered to keep the good stuff in the body fluids and put the bad stuff in the filtrate 2. Reabsorption – filtering the filtrate to make sure none of the “good stuff” is kept in the filtrate (active transport to reclaim valuable substances in body fluids) 3. Secretion – filtering the body fluid to make sure all of the “bad stuff” is in the filtrate 4. Excretion – filtrate leaves the body (urine)
20
Good stuff: cells, proteins, large molecules, valuable solutes such as glucose,
Bad stuff: water, small solutes such as salts, sugars, amino acids, and nitrogenous wastes. Nonessential solutes and wastes
21
SURVEY OF EXCRETORY SYSTEMS
Protonephridia: Flame-bulb system Flatworms Functions in osmoregulation (wastes diffuse out through body surface)
22
Metanephridia Annelids
23
Malpighian Tubules Insects and terrestrial arthropods
24
Vertebrate Kidneys Function in osmoregulation and excretion
25
44.4 ~ MAMMALIAN KIDNEY Site of water balance, salt regulation and excretion Pair of kidneys Each 10 cm long (kidney bean shaped) Supplied with blood by a renal artery and drained by a renal vein Urine exits through ureter and drains into urinary bladder Urine is excreted from urinary bladder through the urethra
26
STRUCTURE & FUNCTION OF NEPHRON
2 regions to the kidney Outer renal cortex Inner renal medulla Functional unit of the kidney is the nephron – consists of single long tubule and a ball of capillaries called the glomerulus Bowman’s capsule – cup shaped swelling that surrounds the glomerulus Each human kidney contains a million nephrons
28
Filtration happens as blood pressure forces fluid from the blood in the glomerulus into the Bowman’s capsule. Filtration is nonselective and filtrate contains: salts, glucose, amino acids, vitamins, nitrogenous wastes and other small molecules Pathway of filtrate – see figure 44.14
30
Nephrons process about 180 L of initial filtrate
Between 1,100 to 2,000 L of blood flows through a pair of human kidney’s each day. Nephrons process about 180 L of initial filtrate Nearly all sugar, vitamins, other organic nutrients and about 99% of the water are reabsorbed into the blood leaving only about 1.5 L of urine to be voided per day 4 steps are completed in: Proximal tubule Descending limbo of the loop of Henle Ascending limb of the loop of Henle Distal tubule Collecting duct
31
44.5 ~ WATER CONSERVATION IS A KEY TO TERRESTRIAL ADAPTATION
As the filtrate flows in the collecting duct past interstitial fluid of increasing osmolarity, more water moves out of the duct by osmois, thereby concentrating the solutes, including urea, that are left behind in the filtrate.
32
REGULATION OF KIDNEY FUNCTION
If a lot of salt is brought in with low water availability the mammal can excrete urea and salt with little water loss in hyperosmotic urine. If salt is scarce and fluid intake is high the kidney can get rid of the excess water with little salt loss by producing large volumes of hypoosmotic urine Regulated through nervous and hormonal controls ADH – antidiuretic hormone RAAS – renin-angiotensin-aldosterone system ANF – atrial natriuretic factor
34
ADH is a response to an increase in the osmolarity of the blood – when the body is dehydrated.
RAAS – responds when a situation that causes an excessive loss of both salt and body fluids (injury, severe diarrhea)
35
44.6 ~ DIVERSE ADAPTATIONS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.