Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jonathan Bishop, Middle East Unit Water and Wastewater Process Manager Advances in Wastewater – The Benefits to the GCC Region.

Similar presentations


Presentation on theme: "Jonathan Bishop, Middle East Unit Water and Wastewater Process Manager Advances in Wastewater – The Benefits to the GCC Region."— Presentation transcript:

1 Jonathan Bishop, Middle East Unit Water and Wastewater Process Manager Advances in Wastewater – The Benefits to the GCC Region

2 Introduction Odour Control Anaerobic Digestion Enhanced Treatment –Nutrient removal Ammonia – standard in region Total Nitrate Phosphate Biological Nutrient Removal Recent Case Study

3 Odour Control

4 Odour Result of biological activity on proteins and other substances in the wastewater in the absence of oxygen Odorants generated comprise volatile organic compounds and gaseous inorganic compounds such as hydrogen sulphide (H 2 S) and ammonia (NH 3 ) Major sources of odour at typical wastewater treatment facilities include: –Pumped Sewers –Inlet Works including screens –Primary Settlement Tanks/Clarifiers –Sludge and return liquor treatment areas

5 Odour- Analysis and Predictions Dispersion models required to convert measured or calculated odour emission rates to atmospheric odour concentrations 2 popular models available – AERMOD and ISC AERMOD is recommended by the US EPA AERMOD requires terrain and meteorological data for accurate predictions. Graphical Model Interface

6 Odour- Analysis and Predictions Model outputs are in the form of diagrams showing likely (98 percentile) atmospheric odour concentrations. Wind roses show prevalent wind direction for the area under assessment.

7 Odour- Control, Treatment and Abatement Dedicated Odour Control and Abatement Equipment include: –Dry absorbers such as carbon filters –Bio-filters and Bio-scrubbers that utilise biomass on a structured media bed. –Chemical Scrubbers that utilise acids/alkalis and oxidants. –Incinerators or thermal oxidisers that oxidise odorants in foul air. Masking Sprays may also be used to mask

8 Odour- Control, Treatment and Abatement

9 Anaerobic Digestion

10 What is Anaerobic Digestion? Conversion of organic matter to methane and carbon dioxide in the absence of oxygen. C 5 H 7 0 2 N+6H 2 05CH 4 + 2NH 3 + 5CO 2 + Biogas Produces stabilised residual solids. Biogas comprises approximately 60 to 65%CH 4, 30 to 35%CO 2 and other gasses.

11 Typical AD system Effective gas mixing Effective external heat exchangers 15 day retention Continuous feeding

12 Enhanced AD System  Effective jet mixing  Effective external heat exchangers  12 day retention  Continuous feeding Pre-treatment

13 What does Pre-treatment do? Increase pathogen destruction –Compliance with microbial standards eg US EPA Class A –Safe use of sludge in agriculture –Applicable to wider range of crops –Secure agricultural disposal route Increase solids destruction –Increased Bio-Gas production –Increased power generation through CHP –Reduced amount of sludge requiring disposal

14 Reaction Steps in AD Step 1:hydrolysis starch  sugars Step 2: acidification sugars  VFAs Step 3: acetogenesis VFAs  acetates Step 4: methanogenesis acetates  biogas slowest step

15 Reaction Steps in AD with Pre-Treatment hydrolysis acidification acetogenesis methanogenesis AD pre-treatment hydrolysis acidification pH = 5.0 to 5.5 pH ~ 7.0 to 7.5

16 Methods of Pre-treatment Biological Thermal Chemical Mechanical (high shear, grinding) Ultrasonic

17 Typical Biological System Ht Ex 1 Ht Ex 2 Ht Ex 3 cold water hot water pre-treated sludge to AD reactor raw sludge 42 o C 55 o C total retention = 2 days

18 Case Study-Kings Lynn STC, United Kingdom Sludge Throughput = 14,500 to 19,000tDS/year Proportion of primary to WAS = 50:50 to 35:65 Pre-treatment = Biological Volatile Solids Destruction = 50 to 60 %

19 Case Study-Kings Lynn STC, United Kingdom Enough power generated to support the Wastewater Treatment Plant and export to the grid

20 Why Adopt AD in the GCC? Slow uptake of anaerobic technologies in the region. WHY? Cheap Energy - More expensive to recover energy from anaerobic digestion than have energy supplied from the grid/other sources. BUT Landfill - There will eventually be constraints on space for landfills which is currently the preferred disposal route for sludge solids OTHER POSSIBLE DRIVERS Fertiliser - An aerobically digested sludge solids could be used as fertiliser if appropriate legislation and regulations are in place. Sustainable - Sustainable source of energy.

21 Nutrient Removal

22 Nutrient removal - Introduction Essential nutrients for plant growth: –Nitrogen – Ammonia, Nitrate –Phosphorous in the form of Orthophosphate Nutrients are usually limited in natural waters and hence restrict plant and algae growth Free fertiliser where TSE is re-used to irrigate plants

23 Why use nutrient removal in GCC? Chlorine disinfection – Ammonia removal required Coastal discharges Prevention of eutrophication where: –TSE is re-used for lakes and water features –Storage in lagoons is primary disposal outlet for TSE.

24 Nutrient Removal – Ammonia Most plants in region are designed to meet re-use standards Normally will also achieve ammonia removal as well Typically ammonia is converted to nitrate via nitrification Requirements for Nitrification: –Typical Feed to Mass (F/M) Ratio = 0.15. This value increases with temperature

25 Nutrient Removal - Nitrate Nitrite Oxidising Bacteria (NOB) Nitrite (NO - ) Ammonia (NH 3 + ) Nitrate (NO 2- ) Nitrogen (N 2 ) Ammonia Oxidising Bacteria (AOB) Aerobic Cycle (Air + Food) Anoxic Cycle (Food)

26 Various Process Configurations Biological Nutrient Removal Johannesburg Process 5 stage Bardenpho process Modified University of Cape Town (MUCT)

27 TENDER DESIGN

28 Background Leightons Middle East were bidding major Watewater Project in the Region Mott MacDonald were commissioned to provide a detailed tender design covering all aspects of the project including: –Civil / Structural –Geo-technical –Process –Mechanical –Electrical and ICA

29 Detailed Tender Design Close collaboration between all parties in the tendering team Clearly defined extent of design responsibilities between all parties involved Use of design examples / experience gained during execution of similar project elsewhere within Mott MacDonald A detailed tender design was produced making use of the skills of all parts of the team Good understanding of risks associated with the project and providing greater cost certainty to contractor and ultimate client Detailed tender stage work would facilitate rapid start following award. Key Design aspects include: –Carrying out engineering calculations for all structures and systems –Preparation of 3D Modelling of key structures

30

31

32

33

34 www.mottmac.com


Download ppt "Jonathan Bishop, Middle East Unit Water and Wastewater Process Manager Advances in Wastewater – The Benefits to the GCC Region."

Similar presentations


Ads by Google