Presentation is loading. Please wait.

Presentation is loading. Please wait.

Conductivity sensor implementation living with the lab © 2011 LWTL faculty team.

Similar presentations


Presentation on theme: "Conductivity sensor implementation living with the lab © 2011 LWTL faculty team."— Presentation transcript:

1 conductivity sensor implementation living with the lab © 2011 LWTL faculty team

2 2 The content of this presentation is for informational purposes only and is intended only for students attending Louisiana Tech University. The author of this information does not make any claims as to the validity or accuracy of the information or methods presented. Any procedures demonstrated here are potentially dangerous and could result in injury or damage. Louisiana Tech University and the State of Louisiana, their officers, employees, agents or volunteers, are not liable or responsible for any injuries, illness, damage or losses which may result from your using the materials or ideas, or from your performing the experiments or procedures depicted in this presentation. If you do not agree, then do not view this content. The copyright label, the Louisiana Tech logo, and the “living with the lab” identifier should not be removed from this presentation. You may modify this work for your own purposes as long as attribution is clearly provided. DISCLAIMER & USAGE living with the lab

3 conductivity measurement circuit we use the same voltage divider circuit used earlier for the photoresistor circuit 3 living with the lab 10 kΩ digital output = 5V when HIGH (set high periodically to measure conductivity) analog input (measures voltage across 10kΩ resistor) what happens to the electrical resistance of the water as it becomes more salty? if the resistance of the salt water decreases, then what happens to the voltage drop across the conductivity sensor? if the voltage drop across the conductivity sensor decreases, then how does this influence the voltage drop across the 10kΩ resistor? so, increasing the salinity of the water causes the analog input read by the Arduino to (increase or decrease)? it decreases it increases 0 to 1023

4 what happens when salt is added to water???? The ionically bonded NaCl molecules dissociate into Na+ and Cl- ions and become mobile they are surrounded by polar water molecules (they are hydrated) 4 living with the lab electrodes (no voltage applied) Na + O H Na + O H O O O O Cl - Na + Cl - Na + Cl - O H O O O O O Cl - Na + Cl - Na + water

5 applying voltage to induce electron flow 5 living with the lab e-e- 5V e-e- 10 kΩ e-e- Cl - Cl Cl 2 Cl - e-e- e-e- e-e- OH - H2OH2O H2OH2O H H e-e- e-e- anode – oxidation (loss of electrons) cathode – reduction (gain of electrons) Cl - Na + Cl - Na + Cl - ion migration Na + Na + is a spectator ion oxidation occurs at the positively charged anode: reduction occurs at the negatively charged cathode: electrons are really not directly conducting through the water from one electrode to the other (like when electrons move through a copper wire) It seems like an Na+ would accept an electron and be reduced... why not???

6 why is H 2 O reduced and not Na + ??? 6 living with the lab reactions further down in the table are less likely to occur reactions with positive voltages will occur spontaneously you must apply external voltage across the electrodes to make a reaction with a negative potential occur

7 7 living with the lab the net reaction of conductivity system the net reaction occurring in the system is... we must apply at least 2.19 V to the conductivity circuit to drive the reaction applying 5 V is sufficient, and higher voltages will increase the rate of oxidation & reduction reactions

8 8 living with the lab system wiring 10 kΩ digital output = 5V when HIGH (set high periodically to measure conductivity) analog input (measures voltage across 10kΩ resistor)


Download ppt "Conductivity sensor implementation living with the lab © 2011 LWTL faculty team."

Similar presentations


Ads by Google