Download presentation
Presentation is loading. Please wait.
Published byAlijah Hankes Modified over 9 years ago
1
PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK, 28.06.2005
2
1. THE TEMPLATE: 2. PIECES OF THE PUZZLE: TALK PLAN THE GENERIC NEBULA...AND SOME EXTRA FLAVOURS INTRODUCTION: 1-D HYDRO 2-D WORLD 3-D WORLD SMALL-SCALE FEATURES MHD
3
THE TEMPLATE THE GENERIC NEBULA
4
SPHERICAL HALO ORDERLY RINGS A BIG MESS INSIDE THE GENERIC NEBULA... VERY HOT GAS („HOT CAVITY”)
5
THE TEMPLATE EXTRA FLAVOURS
6
SOME EXTRA FLAVOURS HOT CAVITY TADPOLES
7
SOME EXTRA FLAVOURS WAVES BIPOLAR LOBES
8
SOME EXTRA FLAVOURS POINT SYMMETRY
9
SOME EXTRA FLAVOURS MULTIPOLAR OUTFLOWS
10
SOME EXTRA FLAVOURS FLIERS
11
SOME EXTRA FLAVOURS ANSAE
12
JETS DISKS SOME EXTRA FLAVOURS
13
BRETS BIPOLAR ROTATING EPISODIC JETS
14
SOME EXTRA FLAVOURS HUBBLE FLOW (v ~ R) BIPOLAR LOBES
15
PIECES OF THE PUZZLE INTRODUCTION: 1-D HYDRO
16
INTRODUCTION: 1-D HYDRO forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 CONTACT SURFACE FRAME forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 CONTACT SURFACE FRAME forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 FREE WIND 2 FRAME (=AMBIENT MEDIUM FRAME)
17
free fast wind shocked fast wind free AGB wind shocked AGB wind forward shock reverse shock contact surface INTRODUCTION: 1-D HYDRO
18
Balick, B. & Frank, A. 2002; ARAA 40, 439..
19
INTRODUCTION: 1-D HYDRO Balick, B. & Frank, A. 2002; ARAA 40, 439..
20
INTRODUCTION: 1-D HYDRO RS CS FS
21
PIECES OF THE PUZZLE 2-D WORLD
22
2-D WORLD: BASICS ROTATION BINARY INTERACTIONS MAGNETIC FIELDS Icke V. 1988; A&A 202, 177 FOR SMALL DEPARTURES FROM SPHERICAL SYMMETRY:
23
reverse shock forward shock contact surface shocked AGB wind free AGB wind shocked fast wind free fast wind 2-D WORLD: BASICS
24
OBLIQUE SHOCK shocked wind 2 free wind 2 SHOCK FRAME 2-D WORLD: OBLIQUE SHOCKS
25
2-D WORLD: SHAPING - BIPOLARS Garcia-Segura,G. et al. 1999; ApJ 517, p.767 M slow =10 -5 M /yr. M fast =10 -7 M /yr. q = 0.1 v eq v pl V pl / V eq = 3
26
2-D WORLD: BREAKOUT
27
2-D WORLD: COLLIMATION, JETS-I Blandford, R. & Rees, M. 1974; MNRAS 169, 395 Norman, M., Smarr, L., Smith, M., & Wilson, J. 1981; ApJ 247, 52
28
Frank, A. & Mellema, G. 1996; ApJ 472, 684 2-D WORLD: COLLIMATION, JETS-I 3 M w = 10 -7 M /yr V w = 200 km/s adiabatic. RS CS FS
29
Frank, A. & Mellema, G. 1996; ApJ 472, 684 2-D WORLD: COLLIMATION, JETS-I M w = 10 -7 M /yr V w = 200 km/s adiabatic q = 70.
30
Frank, A. & Mellema, G. 1996; ApJ 472, 684 2-D WORLD: COLLIMATION, JETS-I
31
2-D WORLD: COLLIMATION, JETS-II
32
forward shock reverse shock contact surface 2-D WORLD: COLLIMATION, JETS-II T
34
PIECES OF THE PUZZLE 3-D WORLD
35
a = 2.4 AUa = 12.6 AU RG star: M * =1M ; R * =0.7 AU secondary: M * =0.6 M RG wind: 10 -6 M /yr fast wind: 10 -8 M /yr; 10 3 km/s 3-D WORLD: BINARY, DENSE WIND SHAPING Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205
36
3-D WORLD: BINARY, DENSE WIND SHAPING Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205
37
Courtesy: Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/ 3-D WORLD: BINARY, DISK FORMATION RW Hya RED GIANT: M=1.6M , R=10 13 cm, M=10 -7 M /yr WHITE DWARF: M=0.48 M , a=210 13 cm.
38
3-D WORLD: BINARY, DENSE WIND SHAPING SYMBIOTIC BINARY COOL STAR: M=1.4M , R=10 13 cm, M=310 -8 M /yr HOT STAR: M=0.6 M , a=310 13 cm, M=410 -9 M /yr.. HIGH LOW Courtesy: Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/
39
3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION Movies by Eric Sandquist; http://mintaka.sdsu.edu/faculty/erics/web/ red giant: 1 M with a 0.45 M core companion: 0.35 M
40
3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION Eric Sandquist; http://mintaka.sdsu.edu/faculty/erics/web/
41
3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION De Marco, O. Et al. 2003; RevMexAA S.Conf. 18,24 1130 days170 days 2310 days3250 days AGB star core 0.56 M envelope 0.69 M radius 1.85 AU companion mass 0.1 M timesscale 9 yr mass lost 4 % AGB star core 0.56 M envelope 0.69 M radius 1.85 AU companion mass 0.1 M synchronous timesscale 9 yr mass lost 25 % AGB star core 0.60 M envelope 0.44 M radius 3.00 AU companion mass 0.1 M timesscale 18 yr mass lost 84 %
42
PIECES OF THE PUZZLE SMALL-SCALE FEATURES
43
SMALL-SCALE FEATURES: COOLING INSTABILITY ~T -0.7 Gaetz,T. & Salpeter, E. 1983; ApJS 52, 155
44
SMALL-SCALE FEATURES: COOLING INSTABILITY; R-T INSTABILITY Movie: courtesy Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/
45
SMALL-SCALE FEATURES: RAYLEIGH-TAYLOR INSTABILITY Movie: courtesy ASC / Alliances Center for Astrophysical Thermonuclear Flashes http://flash.uchicago.edu/website/research/gallery/home.py g lighter fluid denser fluid density schematic: simulation time: 3.1 sec density range: 0.5 – 2.5 g/cm 3
46
isotropic thermal pressure nonisotropic ram pressureSMALL-SCALE FEATURES: THIN SHELL INSTABILITY I Vishniac, E. 1983; ApJ 274, 152
47
SMALL-SCALE FEATURES: THIN SHELL INSTABILITY I shocked AGB wind shocked fast wind free AGB wind forward shock
48
SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II Vishniac, E. 1994; ApJ 428, 186 nonisotropic ram pressure
49
SPHERICAL SYMMETRY: IONIZATION INSTABILITIES (?) SPHERICAL SYMMETRY: RAYLEIGH-TAYLOR INSTABILITY AXIAL SYMMETRY: KELVIN-HELMHOLTZ INSTABILITY SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II Movie: courtesy Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/
50
SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II John Blondin http://wonka.physics.ncsu.edu/~blondin/aas196/page33.html
51
SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY Garcia-Segura,G. & Franco, J. 1996; ApJ 469, p.171
52
SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY Garcia-Segura,G. et al. 1999; ApJ 517, p.767 M slow =10 -5 M /yr. M fast =10 -7 M /yr. F ion =10 46 /s
53
PIECES OF THE PUZZLE MHD
54
MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 ( B(2R * ) = 2G )
55
Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND
56
Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 MHD: WEAK FIELD, TOROIDAL PINCH ON MAGNETICALLY DRIVEN WIND M * = 1 M R * = 4.5 AU spherical wind M w = 10 -6 M /yr at R * toroidal field of 0.1, 1 or 5 G
57
MHD: STRONG FIELD; „MAGNETIC EXPLOSION” Matt, S. 2003; arXiv:astro-ph/0308548 dipole field anchored in the core; envelope ejected if v * v A v e −2 > 0.1 to match pPNe fields of 10 5 –10 8 G are needed
58
MHD: STRONG FIELD; „MAGNETIC EXPLOSION” Matt, S. 2003; arXiv:astro-ph/0308548 dipole field anchored in the core; envelope ejected if v * v A v e −2 > 0.1 to match pPNe fields of 10 5 –10 8 G are needed
59
C. Fendt MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD B v 2 B v 2
60
MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD Kuwabara, T. et al. 2005; ApJ 621, 921
61
MHD: JETS FROM INTERNAL POLOIDAL FIELD Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267
62
MHD: JETS FROM INTERNAL POLOIDAL FIELD Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.