Download presentation
Presentation is loading. Please wait.
1
COUNTERCURRENT MULTISTAGE EXTRACTION
Chapter 5 COUNTERCURRENT MULTISTAGE EXTRACTION (using supercritical fluids) What for? Separation of compounds, mostly liquid, of similar volatility Why supercritical fluids? Low temperature Solvent free products Multistage countercurrent separation Better and new products
2
COUNTERCURRENT MULTISTAGE EXTRACTION Separation of n-3 Fatty acids
Example: Separation of n-3 Fatty acids derived from fish oil EPA C20 with 5 double bonds DHA C22 with 6 double bonds DPA C22 with 5 double bonds EPA: Eicosapentanoic acid DPA: Docosapentanoic acid DHA: Docosahexanoic acid
3
Some Fatty Acids Linoleic acid C17H31COOH, MW: 280,44
Linolenic acid C17H29COOH, MW: 278,42 Arachidonic acid C19H31COOH, MW: 304,46
4
Fatty Acid Content of Some Natural Materials
Fatty acids in weight-percent Spezies -Linolenic acid EPA DPA DHA C18: C20: C22: C22:6 Plants Flax Soya Thistle Algae Amphidinium carterri 0, , ,6 25,4 Dunaliella primolecta 10, , ,9 --- Cryptomonas sp. 7, , ,0 Fish Mackerel 1, , ,82 10,26 Codfish 0, , ,4 7,62 Sardine , ,16 10,25 Thuna fish , ,2 27,7 Herring 1, , ,74 4,06
5
Analysis and Pseudo Components of Fish Oil FA I
Component Feed Gas phase Liquid phase Ki Pseudo component [A-%] [A -%] [A -%] [-] C14:0 7, ,21 6, ,77 0, , , ,83 0, ,31 0, ,63 0, ,70 0, , C14 C16:4n-1 2, ,84 2, ,36 1, ,28 1, ,35 C16:1n-7 9, ,82 8, ,32 C16:3n-3 1, ,45 1, ,32 0, ,48 0, ,26 C16:0 16, ,81 15, ,25 0, ,49 0, ,20 0, ,24 0, ,20 0, ,19 0, ,12 0, ,43 0, , C16 0, ,12 0, ,00 0, ,33 0, ,00 C18:4n-3 3, ,09 3, ,99 1, ,39 1, ,97
6
Analysis and Pseudo Components of Fish Oil FA II
C18:1n-9 10, ,62 10, ,95 3, ,86 3, ,94 0, ,40 0, ,93 0, ,10 0, ,83 C , ,81 3, ,89 C18 C20:4n-6 1, ,73 1, ,72 C20:5n-3 18, , , ,74 0, ,13 0, ,57 C20:4n-3 1, ,69 1, ,67 0, ,17 0, ,65 C20:1n-11 0, ,46 0, ,67 0, ,20 0, ,65 0, ,15 0, ,88 C20:0 0, ,14 0, ,61 C21:5n-3 0, ,49 0, ,64 C20 0, ,18 0, ,45 C22:6n-3 10, ,81 10, ,55 C22:4n-6 0,12 0,14 C22:5n-3 2, ,19 2, ,53 C22:1n-11 0, ,15 0, ,39 C22:0 0,09 0,09 C24:1 0, ,12 0, ,30 C22 99, ,31 98,74
7
Triglycerides P = Palmitic acid O = Oleic acid S = Stearic acid
8
Fatty Acids Glycerol Triglycerides
9
Transformation of Triglycerides
Hydrolysis, Saponification Glycerolysis Methanolysis Interesteri- fication Reduction
10
Countercurrent multistage processing
Characteristics: Binary separation Reflux Enriching section Stripping section Supercritical solvent cycle
11
COMPOSITION OF PRODUCTS YIELD FEED QUANTITY COMPOSITION OF FEED
Definition of the separation problem COMPOSITION OF PRODUCTS YIELD FEED QUANTITY COMPOSITION OF FEED PHASE EQUILIBRIA: (EXPERIMENT; CORRELATING) SEPARATION FACTORS
12
COUNTERCURRENT MULTISTAGE EXTRACTION
Definition of Task COUNTERCURRENT MULTISTAGE EXTRACTION Determine: Number of theoretical stages (or number of transfer units). Height (Size) of a separation device Separation performance (Mass Transfer) Capacity of a separation device Throughput -----> diameter
13
Maximum concentration in a countercurrent process
Limiting Phase Equilibrium Maximum concentration in a countercurrent process
14
Phase equilibrium: PUFA - CO2
15
Separation PUFA - CO2-Propane
16
Separation factor for FAEE in sc CO2
14 MPa 333 K Separation factor Ethyl ester in gas [wt.-%]
17
P,x - Diagramm PUFA- Feed - CO2
18
Density of Coexisting Phases
EE1: EE10: 91.6 EE 13: 9.5 + 90.5 % C 22
19
Equilibrium Calculations: Fundamental Equation
20
Equilibrium Calculations: Cubic EOS (RK-type), Mixing Rule a
21
Equilibrium Calculations: Mixing Rule b,
22
Separation factor: Concentration Dependence
FA-ethyl esters - CO2 Riha 1996
23
McCabe-Thiele Analysis
Design Methods For Number of Theoretical Stages McCabe-Thiele Analysis Ponchon-Savarit in a Jänecke-Diagram Simulation
24
CC-GE: Basic Equations
Mass balances: Enthalpy balances: Equilibrium relations: Rate equations for mass transfer:
25
with: z = axial coordinate in the separation device; Li, Vi = flow of component i in the liquid and gaseous phase; L, V = total flow of liquid and gaseous phase; HV, HL = enthalpy of gaseous and liquid phase; kGi = mass transfer coefficient of component i, related to the gaseous phase; a = mass transfer area per volume of transfer device; P = total pressure; Ki = equilibrium partition coefficient of component i between gaseous and liquid phase; Vi* = equilibrium concentration of component i in the gaseous phase.
26
Mc- Cabe-Thiele Analysis
Equilibrium
27
Minimum number of stages / mimimum reflux ratio
Limiting conditions
28
PUFA - separation: n-min, v-min
29
Jänecke - diagram for sc solvent
30
Countercurrent- Extraction in a Jänecke - Diagram
31
PUFA - separation: Jänecke analysis
32
Separation Analysis
33
Simulation of the separation Select method: nth or NTU
Determine min. reflux, min. nth or NTU Vary reflux-ratio; Calculate separation as function of nth or NTU Calculate nth or NTU as function of separation Determine concentration profiles.
34
Scheme of Stage Calculations
35
Experimental Verfication in a Laboratory Plant
36
PUFA - Separation: C16 - C18 Van Gaver
37
PUFA- Separation: C18: sat. / unsaturated
Van Gaver
38
HETP, HTU FA-ethyl esters - CO2 Riha 1996
39
Kolonnenschaltung zur Gewinnung einer PUFA-Fraktion
40
Separation routes for n3 fatty acids (as esters)
Feed AgNO3 Urea Distillation SFE-Countercurrent Extraction EPA 92 wt.-% DHA 90 wt.-% EPA 44 wt.-% DHA 42 wt.-% EPA 73 wt.-% DHA 85 wt.-% Chromatographic Separation Processes, SFC EPA > 95 wt.-% DPA > 95 wt.-% DHA > 95 wt.-%
41
Solexol - Process with near critical propane
IEC 41:280, 1949
42
Multistage cc separation of n3- FAEE
Krukonis 1988
43
Multistage cc separation of n3- FAEE
THEORY Krukonis 1988
44
Multistage cc separation of n3- FAEE
THEORY Krukonis 1988
45
SOLVING A MULTICOMPONENT SEPARATION IN CC-GE Define the mixture:
Summary and Design Procedure SOLVING A MULTICOMPONENT SEPARATION IN CC-GE Define the mixture: components or pseudo-components Define the separation: identify key components, purity and recovery rate Determine separation performance: (as a function of reflux ratio): number of theoretical stages (n ) or number of transfer units (NTU)
46
Determine efficiency of mass transfer equipment:
Summary and Design Procedure Determine efficiency of mass transfer equipment: tray efficiency, or HETP, or HTU Determine limits for mass flow of countercurrent streams: maximum flow (entrainment, flooding) minimum flow (for effective mass transfer) Decide for a certain reflux ratio Calculate separation performance size of a column for the chosen equipment and operating conditions
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.