Download presentation
Presentation is loading. Please wait.
Published byKarly Nutty Modified over 9 years ago
1
Dec 1996 June 1997 GOME HCHO column data 10 16 molecules cm -2
2
North American Hydrocarbon Emissions Measured from Space Paul Palmer, Daniel Jacob, Arlene Fiore, Randall Martin, Dorian Abbot, Kelly Chance, Thomas Kurosu Division of Engineering and Applied Sciences Harvard University http://www.people.fas.harvard.edu/~ppalmer
3
Overview Why are accurate hydrocarbon emissions important? Relating measured HCHO columns to specific hydrocarbon emissions Are satellite observations consistent with in situ data? The future?
4
CO, hydrocarbons, NO x STRATOSPHERE TROPOSPHERE HO 2 OH NONO 2 H2O2H2O2 O3O3 O3O3 O2O2 hv, H 2 O hv HNO 3 OH HCHO + h 2HO 2 + CO (radical channel) HCHO + OH HO 2 + CO + H 2 O lifetime = few hrs
5
ppb Summertime in situ HCHO datasets Fried et al 1997 Harris et al 1989 Kleindienst et al 1988 Lee et al 1995, 1998 Martin et al 1991 McKeen et al 1997 OZIE -Guenther Reimer et al 1998 Shepson et al 1991
6
Aircraft HCHO profile data Southern Oxidant Study 1995 North Atlantic Regional Experiment 1997 [ppb] Surface source (mostly isoprene+OH) Continental outflow Altitude [km] measurements GEOS-CHEM model Defined background CH 4 + OH
7
Nadir-viewing SBUV instrument Launched April 1995 Pixel 320 x 40 km 2 10.30 am cross-equator time Global coverage in 3 days O 3, NO 2, BrO, OClO, SO 2, HCHO, H 2 O, & cloud coverage Global Ozone Monitoring Experiment
8
HCHO slant column fitting 3 x 10 16 molec cm -2 8 x 10 16 molec cm -2 1 fitting uncertainty 4 x 10 15 molec cm -2 Chance et al [2000] O 3 NO 2 BrO O 2 -O 2
9
vertical column = slant column /AMF satellite d HCHO Earth Surface HCHO mixing ratio C( ) lnI B / Scattering weightsShape factor w( ) = - 1/AMF G lnI B / Sigma coordinate ( ) S( ) = C( ) air / HCHO AMF = AMF G w( ) S( ) d 1 1 0 GEOS-CHEM
10
AMF example - Tennessee GEOS-CHEM S ( ) w( ) S ( ) w( ) AMF G 2.08 AMF 0.71 AMF calculation every GOME July 1996 scene...
11
GEOS-CHEM global 3D model: 101 Driven by DAO GEOS met data 2x2.5 o resolution/26 vertical levels O 3 -NO x -VOC chemistry GEIA isoprene emissions Aerosol scattering: AOD:O 3 Dickerson et al, [1997]
12
[10 16 molec cm -2 ] GEOS-CHEM GOME HCHO columns – July 1996 r 2 = 0.7 n = 756 Bias = 11% HCHO fitted in UV (~340 nm) 1 uncertainty: 4 x 10 15 molec cm -2
13
[10 16 molec cm -2 ] GOMEGEOS-CHEM July 7 1996 July 20 1996 Isoprene “volcano” mm
14
Global 3d model of chemistry How do we validate satellite observations? GOME, MOPITT, SCIAMACHY TES, OMI
15
Relating HCHO columns to hydrocarbon emissions Absence of transport = Y i E i i k HCHO HC i HCHO Chemical loss k HCHO Emission E i HC oxidation k i (HCHO yield Y i )
16
HCHO yields from HCs SpeciesEmission [TgC month -1 ] HCHO Yield [C -1 ] Potential HCHO production [%] CH 4 2.6 1.0 28.5 ISOP 7.3 0.45 32.0 - pinenes 1.1 0.8 0.019 0.045 0.23 0.39 MBO 0.8 0.06 0.53 HCHO 0.15 1.0 1.64 CH 3 OH 2.1 1.0 23.0 Total: 86%
17
L d,i = U Horizontal transport displaces HCHO signal Displacement length scale k i -k HCHO ln ( ) kiki k HCHO midmorning eg values K HCHO = 0.5h -1 ; U = 20kmh -1 ; [OH]=5E6 mol cm -3 ISOP L d,i 40 km CH 4 L d,i = many 1000s km CH 3 OH L d,i =100s km
18
GEOS-CHEM HCHO columns July 1996 [ 10 16 molec cm -2 ] GEIA isoprene emissions
19
NWNE SESW Isoprene emission [10 13 atomC cm -2 s -1 ] Model HCHO column [10 16 molec cm -2 ] July 1996 (25-50 o N, 65-130 o W) Slope S = Y/k HCHO model without isoprene
20
nS [10 3 s] r2r2 W lifetime [hours] Y [C -1 ] NW18102.040.511.670.34 NE21931.900.431.760.30 SE19132.090.651.480.39 SW17501.270.491.480.24 Yields consistent with photochemical model
21
[10 16 molec cm -2 ] GOMEGEOS-CHEM July 7 1996 July 20 1996 Isoprene “volcano” mm
22
The Ozarks Dissected plateau - 129,500 sq km Oak forests – good isoprene emitters " Trees cause more pollution than automobiles do." Cambridge, MA
23
Ozark Isoprene Experiment 1998 Photos c/o Alex Guenther, NCAR Result Summary Type Spec ppb Alt [m] Local time Balloon Isop 1-7 400-1000 0830-1930 Plane Isop 3-6 450-900 1800-2000 Surface HCHO 7-15(11) 0830-1930 Plane HCHO 3-11(7) 1300-1800
24
HCHO data over the Ozarks Missouri Illinois Kansas [ppb] Aircraft data @ 350 m during July 1999 c/o Y-N. Lee, Brookhaven National Lab. OZARKS SOS 1999
25
[10 16 molec cm -2 ] GOMEGEOS-CHEM July 7 1996 July 20 1996 Surface temperature [K] Slant column HCHO [10 16 mol cm -2 ] Temperature dependence of isoprene emission Isoprene “volcano”
26
Global 3d model of chemistry
27
EPA BEIS2 GEIA
28
ppb Summertime in situ HCHO datasets Fried et al 1997 Harris et al 1989 Kleindienst et al 1988 Lee et al 1995, 1998 Martin et al 1991 McKeen et al 1997 OZIE -Guenther Reimer et al 1998 Shepson et al 1991
29
Modeling in situ data GEIABEIS2 r 2 = 0.53 Bias -3% r 2 = 0.65 Bias -30%
30
NWNE SESW Isoprene emission [10 13 atomC cm -2 s -1 ] Model HCHO column [10 16 molec cm -2 ] Model Transfer functions model without isoprene
31
[10 12 atom C cm -2 s -1 ] GOME isoprene emissions – July 1996
32
Consistency: GOME and in situ data r 2 = 0.77 Bias -12%
33
Global HCHO from GOME: July 1996 [10 16 molec cm -2 ]
34
ATSR Firecounts – July 1996
35
[10 16 molec cm -2 ] Global HCHO from GOME: Oct 1996
36
CONSTRAINING SEASONAL AND INTERANNUAL VARIABILITY IN BIOGENIC VOC EMISSIONS HCHO columns, Jun-Aug 1997 GOMEGEOS-CHEM
37
Summary New methodology for HC emission from space-based HCHO columns Isoprene is dominant HC for North American summertime GOME shows Ozarks isoprene volcano GOME data consistent with in situ data Future work will include global mapping
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.