Presentation is loading. Please wait.

Presentation is loading. Please wait.

2007-2008 Photosynthesis: Life from Light and Air.

Similar presentations


Presentation on theme: "2007-2008 Photosynthesis: Life from Light and Air."— Presentation transcript:

1

2 2007-2008

3 Photosynthesis: Life from Light and Air

4 Energy needs of life  All life needs a constant input of energy  Heterotrophs (Animals)  get their energy from “eating others”  eat food = other organisms = organic molecules  make energy through respiration  Autotrophs (Plants)  produce their own energy (from “self”)  convert energy of sunlight  build organic molecules (CHO) from CO 2  make energy & synthesize sugars through photosynthesis consumers producers

5 How are they connected? glucose + oxygen  carbon + water + energy dioxide C 6 H 12 O 6 6O 2 6CO 2 6H 2 OATP  +++ Heterotrophs + water + energy  glucose + oxygen carbon dioxide 6CO 2 6H 2 O C 6 H 12 O 6 6O 2 light energy  +++ Autotrophs making energy & organic molecules from light energy making energy & organic molecules from ingesting organic molecules Where’s the ATP? oxidation = exergonic reduction = endergonic

6 N P K … H2OH2O What does it mean to be a plant  Need to…  collect light energy  transform it into chemical energy  store light energy  in a stable form to be moved around the plant or stored  need to get building block atoms from the environment  C,H,O,N,P,K,S,Mg  produce all organic molecules needed for growth  carbohydrates, proteins, lipids, nucleic acids ATP glucose CO 2

7 Plant structure  Obtaining raw materials  sunlight  leaves = solar collectors  CO 2  stomates = gas exchange H2OH2O  uptake from roots  nutrients  N, P, K, S, Mg, Fe…  uptake from roots

8 stomate transpiration gas exchange

9 Stomates

10 Chloroplasts chloroplasts in plant cell cross section of leaf leaves chloroplast absorb sunlight & CO 2 make energy & sugar chloroplasts contain chlorophyll CO 2

11  Chloroplasts  double membrane  stroma  fluid-filled interior  thylakoid sacs  grana stacks  Thylakoid membrane contains  chlorophyll molecules  electron transport chain  ATP synthase  H + gradient built up within thylakoid sac Plant structure H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ outer membrane inner membrane thylakoid granum stroma thylakoid chloroplast ATP

12 Photosynthesis  Light reactions  light-dependent reactions  energy conversion reactions  convert solar energy to chemical energy  ATP & NADPH  Calvin cycle  light-independent reactions  sugar building reactions  uses chemical energy (ATP & NADPH) to reduce CO 2 & synthesize C 6 H 12 O 6 It’s not the Dark Reactions!

13 Pigments of photosynthesis  Chlorophylls & other pigments  embedded in thylakoid membrane  arranged in a “photosystem”  collection of molecules  structure-function relationship How does this molecular structure fit its function?

14 A Look at Light  The spectrum of color ROYGBIV

15 Light: absorption spectra  Photosynthesis gets energy by absorbing wavelengths of light  chlorophyll a  absorbs best in red & blue wavelengths & least in green  accessory pigments with different structures absorb light of different wavelengths  chlorophyll b, carotenoids, xanthophylls Why are plants green?

16 Photosystems of photosynthesis  2 photosystems in thylakoid membrane  collections of chlorophyll molecules  act as light-gathering molecules  Photosystem II  chlorophyll a  P 680 = absorbs 680nm wavelength red light  Photosystem I  chlorophyll b  P 700 = absorbs 700nm wavelength red light reaction center antenna pigments

17 You can grow if you Ask Questions!

18 2008-2009 ATP Making energy! The point is to make ATP!

19 The energy needs of life  Organisms are endergonic systems  What do we need energy for?  synthesis  building biomolecules  reproduction  movement  active transport  temperature regulation

20 Where do we get the energy from?  Work of life is done by energy coupling  use exergonic (catabolic) [energy out] reactions to fuel endergonic (anabolic) [energy in] reactions ++ energy + + digestion synthesis

21 ATP Living economy  Fueling the body’s economy  eat high energy organic molecules  food = carbohydrates, lipids, proteins, nucleic acids  break them down  digest = catabolism  capture released energy in a form the cell can use  Need an energy currency  a way to pass energy around  need a short term energy storage molecule Whoa! Hot stuff!

22 ATP high energy bonds How efficient! Build once, use many ways  Adenosine TriPhosphate  modified nucleotide  nucleotide = adenine + ribose + P i  AMP  AMP + P i  ADP  ADP + P i  ATP  adding phosphates is endergonic

23 How does ATP store energy? P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O  Each negative PO 4 more difficult to add  a lot of stored energy in each bond  most energy stored in 3rd P i  3rd P i is hardest group to keep bonded to molecule  Bonding of negative P i groups is unstable  spring-loaded  P i groups “pop” off easily & release energy Instability of its P bonds makes ATP an excellent energy donor I think he’s a bit unstable… don’t you? AMP ADPATP

24 How does ATP transfer energy? P O–O– O–O– O –O–O P O–O– O–O– O –O–O P O–O– O–O– O –O–O 7.3 energy + P O–O– O–O– O –O–O  ATP  ADP  releases energy  ∆G = -7.3 kcal/mole  Fuel other reactions  Phosphorylation  released P i can transfer to other molecules  destabilizing the other molecules  enzyme that phosphorylates = “kinase” ADPATP

25 It’s never that simple! An example of Phosphorylation…  Building polymers from monomers  need to destabilize the monomers  phosphorylate! C H OH H HOHO C C H O H C + H2OH2O + +4.2 kcal/mol C H OH C H P + ATP + ADP H HOHO C + C H O H CC H P + PiPi “kinase” enzyme -7.3 kcal/mol -3.1 kcal/mol enzyme H OH C H HOHO C synthesis

26 That’s the rest of my story! Any Questions?

27 Cellular Respiration Harvesting Chemical Energy ATP

28 Harvesting stored energy  Energy is stored in organic molecules  carbohydrates, fats, proteins  Heterotrophs eat these organic molecules  food  digest organic molecules to get…  raw materials for synthesis  fuels for energy  controlled release of energy  “burning” fuels in a series of step-by-step enzyme-controlled reactions

29 Harvesting stored energy  Glucose is the model  catabolism of glucose to produce ATP C 6 H 12 O 6 6O 2 ATP6H 2 O6CO 2  + ++ CO 2 + H 2 O + heat fuel (carbohydrates) COMBUSTION = making a lot of heat energy by burning fuels in one step RESPIRATION = making ATP (& some heat) by burning fuels in many small steps CO 2 + H 2 O + ATP (+ heat) ATP glucose glucose + oxygen  energy + water + carbon dioxide respiration O2O2 O2O2 + heat enzymes ATP

30 How do we harvest energy from fuels?  Digest large molecules into smaller ones  break bonds & move electrons from one molecule to another  as electrons move they “carry energy” with them  that energy is stored in another bond, released as heat or harvested to make ATP e-e- ++ e-e- +– loses e-gains e-oxidizedreduced oxidationreduction redox e-e-

31 How do we move electrons in biology?  Moving electrons in living systems  electrons cannot move alone in cells  electrons move as part of H atom  move H = move electrons p e + H + H +– loses e-gains e-oxidizedreduced oxidationreduction C 6 H 12 O 6 6O 2 6CO 2 6H 2 OATP  +++ oxidation reduction H e-e-

32 Coupling oxidation & reduction  REDOX reactions in respiration  release energy as breakdown organic molecules  break C-C bonds  strip off electrons from C-H bonds by removing H atoms  C 6 H 12 O 6  CO 2 = the fuel has been oxidized  electrons attracted to more electronegative atoms  in biology, the most electronegative atom?  O 2  H 2 O = oxygen has been reduced  couple REDOX reactions & use the released energy to synthesize ATP C 6 H 12 O 6 6O 2 6CO 2 6H 2 OATP  +++ oxidation reduction O2O2

33 Oxidation & reduction  Oxidation  adding O  removing H  loss of electrons  releases energy  exergonic  Reduction  removing O  adding H  gain of electrons  stores energy  endergonic C 6 H 12 O 6 6O 2 6CO 2 6H 2 OATP  +++ oxidation reduction

34 Moving electrons in respiration  Electron carriers move electrons by shuttling H atoms around  NAD +  NADH (reduced)  FAD +2  FADH 2 (reduced) + H reduction oxidation P O–O– O–O– O –O–O P O–O– O–O– O –O–O C C O NH 2 N+N+ H adenine ribose sugar phosphates NAD + nicotinamide Vitamin B3 niacin P O–O– O–O– O –O–O P O–O– O–O– O –O–O C C O NH 2 N+N+ H NADH carries electrons as a reduced molecule reducing power! How efficient! Build once, use many ways H like $$ in the bank

35 Overview of cellular respiration  3 metabolic stages  Anaerobic respiration 1. Glycolysis  respiration without O 2  in cytosol  Aerobic respiration  respiration using O 2  in mitochondria 2. Krebs cycle 3. Electron transport chain C 6 H 12 O 6 6O 2 ATP6H 2 O6CO 2  +++ (+ heat )

36 2006-2007 What’s the point? The point is to make ATP ! ATP

37 2007-2008 Cellular Respiration Stage 1: Glycolysis

38 2007-2008 What’s the point? The point is to make ATP ! ATP

39 Glycolysis glucose      pyruvate 2x2x 6C3C In the cytosol? Why does that make evolutionary sense? That’s not enough ATP for me!  Breaking down glucose  “glyco – lysis” (splitting sugar)  ancient pathway which harvests energy  where energy transfer first evolved  transfer energy from organic molecules to ATP  still is starting point for ALL cellular respiration  but it’s inefficient  generate only 2 ATP for every 1 glucose  occurs in cytosol

40 Glycolysis summary endergonic invest some ATP exergonic harvest a little ATP & a little NADH net yield 2 ATP 2 NADH 4 ATP ENERGY INVESTMENT ENERGY PAYOFF G3P C-C-C-P NET YIELD like $$ in the bank -2 ATP

41 Fermentation (anaerobic)  Bacteria, yeast 1C 3C2C pyruvate  ethanol + CO 2  Animals, some fungi pyruvate  lactic acid 3C  beer, wine, bread  cheese, anaerobic exercise (no O 2 ) NADHNAD + NADHNAD + back to glycolysis 

42 2007-2008 What’s the point? The point is to make ATP ! ATP

43 2007-2008 NO! There’s still more to my story! Any Questions?

44 Cellular Respiration Stage 2: The Kreb’s Cycle

45 Cellular respiration

46  Coordination of chemical processes across whole organism  digestion  catabolism when organism needs energy or needs raw materials  synthesis  anabolism when organism has enough energy & a supply of raw materials  by regulating enzymes  feedback mechanisms  raw materials stimulate production  products inhibit further production Metabolism CO 2

47 Cellular Respiration Stage 3: Electron Transport Chain

48 ATP accounting so far…  Glycolysis  2 ATP  Kreb’s cycle  2 ATP  Life takes a lot of energy to run, need to extract more energy than 4 ATP! A working muscle recycles over 10 million ATPs per second There’s got to be a better way! I need a lot more ATP!

49 There is a better way!  Electron Transport Chain  series of proteins built into inner mitochondrial membrane  along cristae  transport proteins & enzymes  transport of electrons down ETC linked to pumping of H + to create H + gradient  yields ~36 ATP from 1 glucose!  only in presence of O 2 (aerobic respiration) O2O2 That sounds more like it!

50 Mitochondria  Double membrane  outer membrane  inner membrane  highly folded cristae  enzymes & transport proteins  intermembrane space  fluid-filled space between membranes Oooooh! Form fits function!

51 Electrons flow downhill  Electrons move in steps from carrier to carrier downhill to oxygen  each carrier more electronegative  controlled oxidation  controlled release of energy make ATP instead of fire!

52 You can grow if you Ask Questions!


Download ppt "2007-2008 Photosynthesis: Life from Light and Air."

Similar presentations


Ads by Google