Download presentation
Presentation is loading. Please wait.
Published byAnnabelle Garfield Modified over 9 years ago
1
© 2012 Pearson Education, Inc. A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared to the electric flux through surface #1, the flux through surface #2 is A.greater. B.B. the same. C. less, but not zero. D. zero. E. not enough information given to decide Q22.1 +q+q Gaussian surface #1 Gaussian surface #2
2
© 2012 Pearson Education, Inc. A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared to the electric flux through surface #1, the flux through surface #2 is A.greater. B.B. the same. C. less, but not zero. D. zero. E. not enough information given to decide A22.1 +q+q Gaussian surface #1 Gaussian surface #2
3
© 2012 Pearson Education, Inc. Two point charges, +q (in red) and –q (in blue), are arranged as shown. Through which closed surface(s) is the net electric flux equal to zero? Q22.2 A.surface A B.B. surface B C. surface C D. surface D E. both surface C and surface D
4
© 2012 Pearson Education, Inc. Two point charges, +q (in red) and –q (in blue), are arranged as shown. Through which closed surface(s) is the net electric flux equal to zero? A.surface A B.B. surface B C. surface C D. surface D E. both surface C and surface D A22.2
5
© 2012 Pearson Education, Inc. A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is – 3Q, and it is insulated from its surroundings. In the region a < r < b, A. the electric field points radially outward. B. the electric field points radially inward. C. the electric field is zero. D. not enough information given to decide Q22.3
6
© 2012 Pearson Education, Inc. A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is – 3Q, and it is insulated from its surroundings. In the region a < r < b, A. the electric field points radially outward. B. the electric field points radially inward. C. the electric field is zero. D. not enough information given to decide A22.3
7
© 2012 Pearson Education, Inc. A solid spherical conductor has a spherical cavity in its interior. The cavity is not centered on the center of the conductor. If a positive charge is placed on the conductor, the electric field in the cavity Q22.4 Conductor Cavity A. points generally toward the outer surface of the conductor. B. points generally away from the outer surface of the conductor. C. is zero. D. not enough information given to decide
8
© 2012 Pearson Education, Inc. A solid spherical conductor has a spherical cavity in its interior. The cavity is not centered on the center of the conductor. If a positive charge is placed on the conductor, the electric field in the cavity A. points generally toward the outer surface of the conductor. B. points generally away from the outer surface of the conductor. C. is zero. D. not enough information given to decide A22.4 Conductor Cavity
9
© 2012 Pearson Education, Inc. There is a negative surface charge density in a certain region on the surface of a solid conductor. Just beneath the surface of this region, the electric field A. points outward, toward the surface of the conductor. B. points inward, away from the surface of the conductor. C. points parallel to the surface. D. is zero. E. not enough information given to decide Q22.5
10
© 2012 Pearson Education, Inc. There is a negative surface charge density in a certain region on the surface of a solid conductor. Just beneath the surface of this region, the electric field A. points outward, toward the surface of the conductor. B. points inward, away from the surface of the conductor. C. points parallel to the surface. D. is zero. E. not enough information given to decide A22.5
11
© 2012 Pearson Education, Inc. For which of the following charge distributions would Gauss’s law not be useful for calculating the electric field? A. a uniformly charged sphere of radius R B. a spherical shell of radius R with charge uniformly distributed over its surface C. a right circular cylinder of radius R and height h with charge uniformly distributed over its surface D. an infinitely long circular cylinder of radius R with charge uniformly distributed over its surface E. Gauss’s law would be useful for finding the electric field in all of these cases. Q22.6
12
© 2012 Pearson Education, Inc. For which of the following charge distributions would Gauss’s law not be useful for calculating the electric field? A. a uniformly charged sphere of radius R B. a spherical shell of radius R with charge uniformly distributed over its surface C. a right circular cylinder of radius R and height h with charge uniformly distributed over its surface D. an infinitely long circular cylinder of radius R with charge uniformly distributed over its surface E. Gauss’s law would be useful for finding the electric field in all of these cases. A22.6
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.