Presentation is loading. Please wait.

Presentation is loading. Please wait.

Robustness and Implementability of Timed Automata Martin De Wulf Laurent Doyen Nicolas Markey Jean-François Raskin Centre Fédéré en Vérification FORMATS-FTRTFT.

Similar presentations


Presentation on theme: "Robustness and Implementability of Timed Automata Martin De Wulf Laurent Doyen Nicolas Markey Jean-François Raskin Centre Fédéré en Vérification FORMATS-FTRTFT."— Presentation transcript:

1 Robustness and Implementability of Timed Automata Martin De Wulf Laurent Doyen Nicolas Markey Jean-François Raskin Centre Fédéré en Vérification FORMATS-FTRTFT 2004 – Sep 24 th - Grenoble

2 Motivation Embedded Controllers … are difficult to develop (concurrency, real- time, continuous environment,...). … are safety critical. Use formal models + Verification: Timed Automata and Reachability Analysis

3 Timed Automata closed guardresetLocation Transition Clocks: {a,b}

4 Objectives From a verified model, generate (automatically) a correct implementation Using classical formalism (e.g. timed automata) …but interpreting the model in a way that guarantees the transfer of the properties from model to implementation

5 Robustness and Implentation Model Perfect continuous clocks Instantaneous synchronisations Reaction time = 0 Digital clocks Delayed synchronisations Reaction time > 0 Implementation vs. Correct model Correct implementation?

6 Timed Automata: Semantics Classical Perfect clocks Rate: Guard: Imprecise clocks Rate: Guard: Enlargedvs. Shortcut:

7 From Model to Implementation   >0 Reach([A´]  )  Bad =  Timed automaton A is implementable [DDR04] if Reach([A])  Bad =  Timed automaton A is correct if which is equivalent to   >0 Reach([A´]  )  Bad = 

8 Robustness No ! (see example) Is it always the case that ?   >0 Reach([A]  ) = Reach([A]) How to compute ?   >0 Reach([A]  ) [Pur98] gives an algorithm for   >0 Reach([A]  ) We show that   >0 Reach([A]  ) =   >0 Reach([A]  )

9 An example showing that Reach([A])    >0 Reach([A]  )

10 Example

11 Classical Semantics Example

12 Example

13 Example

14 Example

15 Example

16 Example

17 Example

18 Enlarged Semantics Example

19 Example

20 Example

21 Example

22 Example

23 Example

24 Example

25 Example

26 Example

27 Example

28 Example

29 Example

30 Example

31 Example

32 Example

33 Example

34 Example

35 Example

36 Example

37 Example

38 Example Reach([A]  )

39 Enlarged Semantics Example   >0 Reach([A]  ) When

40 Enlarged SemanticsClassical Semantics vs. Example   >0 Reach([A]  ) Reach([A])

41 Black cycles are reachable Blue cycles are not ! Classical semantics [A] Enlarged semantics One blue cycle is reachable By repeating this cycle with Δ>0, the entire regions are reachable ! Example [A] 

42 Cycles in Timed Automata Algortihm [Pur98] is based on this observation: It just adds the cycles to reachable states Until no more cycle is accessible Hence, the implementability problem is decidable ! (and PSPACE-complete) Given a timed automaton A, determine whether there exists Δ>0 such that Reach([A]  )  Bad = 

43 Open questions Maximize Δ such that Decide whether there exists Δ such that Find a practical algorithm for And many others… Reach([A]  )  Bad =    >0 Reach([A]  ) UntimedLang([A]  ) = UntimedLang([A])

44 References [DDR04] M. De Wulf, L. Doyen, J.-F. Raskin. Almost ASAP Semantics: From Timed Model to Timed Implementation. LNCS 2993, HSCC 2004. [Pur98] A. Puri. Dynamical Properties of Timed Automata. FTRTFT 1998.

45 Model-based development Make a model of the environment: Env Make clear the control objective: Bad Make a model of the control strategy: ControllerModel Verify: Does Env || ControllerModel avoid Bad ? Good, but after ?


Download ppt "Robustness and Implementability of Timed Automata Martin De Wulf Laurent Doyen Nicolas Markey Jean-François Raskin Centre Fédéré en Vérification FORMATS-FTRTFT."

Similar presentations


Ads by Google