Presentation is loading. Please wait.

Presentation is loading. Please wait.

Implementation and Evaluation of a Safe Runtime in Cyclone Matthew Fluet Cornell University Daniel Wang Princeton University.

Similar presentations


Presentation on theme: "Implementation and Evaluation of a Safe Runtime in Cyclone Matthew Fluet Cornell University Daniel Wang Princeton University."— Presentation transcript:

1 Implementation and Evaluation of a Safe Runtime in Cyclone Matthew Fluet Cornell University Daniel Wang Princeton University

2 Introduction Web-based applications Written in high-level, safe languages C#, Java, Perl, PHP, Python, Tcl Automatic memory management Application servers Written in unsafe languages Host applications via interpreters (written in C)

3 Introduction Long-term goal: a complete web- application server written in a safe language Short-term goal: a complete interpreter written in a safe language Implementing the core of an interpreter is not in itself a significant challenge Implementing the runtime system is a challenge

4 Outline A Scheme interpreter in Cyclone Why Scheme Key Features of Cyclone Core Scheme Interpreter Garbage Collector Performance Evaluation Conclusion

5 Why Scheme? Ease of implementation Core interpreter loop is only ~500 lines Rely on an external Scheme front-end to expand the full Scheme language into a core Scheme subset Features desirable for web programming

6 Key Features of Cyclone Safe, C-like language Static type- and control-flow analysis Intended for systems programming Data representation Resource management Region-based memory management Static, lexical, dynamic, heap, unique, …

7 Simple Copying Collector From-space and To-space Forwarding pointers

8 Simple Copying Collector From-space and To-space Natural correspondence with regions LIFO discipline of lexical regions insufficient Dynamic regions appear to be sufficient Forwarding pointers

9 Dynamic Regions Non-nested lifetimes Manual creation and deallocation Represented by unique pointer ( key ) Unique pointer ≡ Capability Access the region

10 Dynamic Regions Operations new : create a fresh dynamic region Produces unique key open : open a dynamic region for allocation Temporarily consumes key free : deallocate a dynamic region Permanently consumes key

11 GC and Dynamic Regions... // create the to-space’s key let NewDynamicRegion { to_key} = new_ukey(); state_t = to_state; // open the from-space’s key { region from_r = open_ukey(from_key); // open the to-space’s key { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } } // free the from-space free_ukey(from_key);...

12 GC and Dynamic Regions... // create the to-space’s key let NewDynamicRegion { to_key} = new_ukey(); state_t = to_state; // open the from-space’s key { region from_r = open_ukey(from_key); // open the to-space’s key { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } } // free the from-space free_ukey(from_key);...

13 GC and Dynamic Regions... // create the to-space’s key let NewDynamicRegion { to_key} = new_ukey(); state_t = to_state; // open the from-space’s key { region from_r = open_ukey(from_key); // open the to-space’s key { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } } // free the from-space free_ukey(from_key);...

14 GC and Dynamic Regions... // create the to-space’s key let NewDynamicRegion { to_key} = new_ukey(); state_t = to_state; // open the from-space’s key { region from_r = open_ukey(from_key); // open the to-space’s key { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } } // free the from-space free_ukey(from_key);...

15 GC and Dynamic Regions... // create the to-space’s key let NewDynamicRegion { to_key} = new_ukey(); state_t = to_state; // open the from-space’s key { region from_r = open_ukey(from_key); // open the to-space’s key { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } } // free the from-space free_ukey(from_key);...

16 Forwarding Pointers What is the type of a forwarding pointer?

17 Forwarding Pointers What is the type of a forwarding pointer? A pointer to a Value in To-space

18 Forwarding Pointers What is the type of a forwarding pointer? A pointer to a Value in To-space, whose forwarding pointer is a pointer to a Value in To- space’s To-space

19 Forwarding Pointers What is the type of a forwarding pointer? A pointer to a Value in To-space, whose forwarding pointer is a pointer to a Value in To- space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To- space’s To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To- space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space’s To-space’s To- space’s To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space, whose forwarding pointer is a pointer to a Value in To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To-space’s To- space’s To-space’s To-space’s To-space, …

20 Dynamic Region Sequences Introduce a new type constructor mapping region names to region names typedef _::R next_rgn Although the region names ρ and next_rgn are related, the lifetimes of their corresponding regions are not

21 Dynamic Region Sequences Operations new, open, free : as for dynamic regions next : create next_rgn from ρ

22 Dynamic Region Sequences Operations next : create next_rgn from ρ Have an infinite supply of region names next will create a fresh dynamic region key Need a linear supply of keys Use Cyclone’s unique pointers

23 Dynamic Region Sequences Operations next : create next_rgn from ρ A dynamic region sequence is a pair key : a dynamic region key gen : a unique pointer Unique pointer ≡ Capability Produce the next_rgn key and gen Consumed by next

24 Dynamic Region Sequences Operations new : create a fresh dynamic region sequence Produces unique key and gen next : creates next dynamic region sequence Produces unique key and gen Permanently consumes gen

25 GC and Dynamic Region Sequences gcstate_t doGC(gcstate_t gcs) { // unpack the gc state let GCState{ DRSeq {from_key, from_gen}, from_state} = gcs; // generate the to-space let DRSeq{to_key, to_gen} = next_drseq(from_gen); state_t > to_state; // open the from-space { region from_r = open_ukey(from_key); // open the to-space { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } // pack the new gc state gcs = GCState{DRSeq{to_key, to_gen}, to_state}; } // free the from space free_ukey(from_key); return gcs; }

26 GC and Dynamic Region Sequences gcstate_t doGC(gcstate_t gcs) { // unpack the gc state let GCState{ DRSeq {from_key, from_gen}, from_state} = gcs; // generate the to-space let DRSeq{to_key, to_gen} = next_drseq(from_gen); state_t > to_state; // open the from-space { region from_r = open_ukey(from_key); // open the to-space { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } // pack the new gc state gcs = GCState{DRSeq{to_key, to_gen}, to_state}; } // free the from space free_ukey(from_key); return gcs; }

27 GC and Dynamic Region Sequences gcstate_t doGC(gcstate_t gcs) { // unpack the gc state let GCState{ DRSeq {from_key, from_gen}, from_state} = gcs; // generate the to-space let DRSeq{to_key, to_gen} = next_drseq(from_gen); state_t > to_state; // open the from-space { region from_r = open_ukey(from_key); // open the to-space { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } // pack the new gc state gcs = GCState{DRSeq{to_key, to_gen}, to_state}; } // free the from space free_ukey(from_key); return gcs; }

28 GC and Dynamic Region Sequences gcstate_t doGC(gcstate_t gcs) { // unpack the gc state let GCState{ DRSeq {from_key, from_gen}, from_state} = gcs; // generate the to-space let DRSeq{to_key, to_gen} = next_drseq(from_gen); state_t > to_state; // open the from-space { region from_r = open_ukey(from_key); // open the to-space { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } // pack the new gc state gcs = GCState{DRSeq{to_key, to_gen}, to_state}; } // free the from space free_ukey(from_key); return gcs; }

29 GC and Dynamic Region Sequences gcstate_t doGC(gcstate_t gcs) { // unpack the gc state let GCState{ DRSeq {from_key, from_gen}, from_state} = gcs; // generate the to-space let DRSeq{to_key, to_gen} = next_drseq(from_gen); state_t > to_state; // open the from-space { region from_r = open_ukey(from_key); // open the to-space { region to_r = open_ukey(to_key); // copy the state and reachable data to_state = copy_state(to_r, from_state); } // pack the new gc state gcs = GCState{DRSeq{to_key, to_gen}, to_state}; } // free the from space free_ukey(from_key); return gcs; }

30 GC and Dynamic Region Sequences Comparison with type-preserving GCs Interpreter can be written in a trampoline style, rather than continuation passing style Intuitive typing of forwarding pointers

31 Performance Evaluation InterpreterRuntime Cyclone (Safe GC) Safe Cyclone (BDW GC) SafeUnsafe SISC (Sun JVM) SafeUnsafe MzScheme (BDW GC) Unsafe

32 Performance Evaluation

33

34 Size of Unsafe Code Interpreter (lines of code) Runtime System (lines of code) Cyclone (Safe GC) 01800 Cyclone (BDW GC) 09000 SISC (Sun JVM) 0229,100 MzScheme (BDW GC) 31,0009000

35 Conclusion Significantly reduce amount of unsafe code needed to implement an interpreter May incur a performance penalty for extra degree of safety Future Work Reduce performance penalty Per thread regions providing customization


Download ppt "Implementation and Evaluation of a Safe Runtime in Cyclone Matthew Fluet Cornell University Daniel Wang Princeton University."

Similar presentations


Ads by Google