Download presentation
Presentation is loading. Please wait.
Published byGriffin Horton Modified over 9 years ago
1
Intelligent Database Systems Lab N.Y.U.S.T. I. M. local-density based spatial clustering algorithm with noise Presenter : Lin, Shu-Han Authors : Lian Duan, Lida Xub, Feng Guo, Jun Lee, Baopin Yan Information Systems 32 (2007)
2
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 2 Outline Motivation Objective Methodology Experiments Conclusion Comments
3
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Motivation DBSCAN (Density Based Spatial Clustering of Applications with Noise) is density-based clustering method. use global density parameter to characterize the datasets. Clustering
4
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 4 DBSCAN is a density-based algorithm. Density = number of points within a specified radius (Eps) A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point A noise point is any point that is not a core point or a border point. DBSCAN 4
5
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Original Points Point types: core, border and noise Eps = 10, MinPts = 4 DBSCAN: Core, Border and Noise Points 5
6
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Objectives Replace global density parameter Eps MinPts 6
7
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Overview 7 Core Point: local outlier factor - LOF(p) is small enough LOF: the degree the object is being outlying LRD: the local-density of the object :Local-density reachability
8
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – LDBSCAN 8 Local-density reachable LRD: the local-density of the object reach-dist k (p, o) = max{k-distance(o), d(p, o)} Ex: LRD(p)/LRD(q)=1.28
9
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – LDBSCAN 9 LOF: the degree the object is being outlying
10
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments – parameter 10 LOFUB \ MinPts
11
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments – parameter 11 Local density reachable :pct LRD(q) = 0.8 LRD(p) = 1 0.8/1.2<1, 1!<0.8*1.2, // !Local density reachable 0.8/1.5<1,1 <0.8*1.5, // Local density reachable
12
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments – compare with OPTICS 12 Ordering Points To Identify the Clustering Structure
13
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments – compare with OPTICS 13 The idea of LOF
14
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusions Global density parameter vs. different local densities LDBSCAN: Local-density-based 14
15
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Comments Advantage improves idea from other approach Drawback It’s still hard to set the parameter The real data is not a 2-D problem Application not suitable for SOM 15
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.