Presentation is loading. Please wait.

Presentation is loading. Please wait.

Weak Lensing Tomography Sarah Bridle University College London.

Similar presentations


Presentation on theme: "Weak Lensing Tomography Sarah Bridle University College London."— Presentation transcript:

1 Weak Lensing Tomography Sarah Bridle University College London

2 3d vs 2d (tomography) Non-Gaussian -> higher order statistics Low redshift -> dark energy versus

3 Weak Lensing Tomography 1.In principle (perfect zs) Hu 1999 astro-ph/9904153 2.Photometric redshifts Csabai et al. astro-ph/0211080 3.Effect of photometric redshift uncertainties Ma, Hu & Huterer astro-ph/0506614 4.Intrinsic alignments 5.Shear calibration

4 1. In principle (perfect zs) Qualitative overview Lensing efficiency and power spectrum –Dependence on cosmology Power spectrum uncertainties Cosmological parameter constraints

5 1. In principle (perfect zs) Core reference Hu 1999 astro-ph/9904153 See also Refregier et al astro-ph/0304419 Takada & Jain astro-ph/0310125

6 Cosmic shear two point tomography  

7  

8   

9

10 (Hu 1999)

11

12 Lensing efficiency (Hu 1999) Equivalently: g i (z l ) = ∫ z l n i (z s ) D l D ls / D s dz s i.e. g is just the weighted D l D ls / D s

13 Can you sketch g 1 (z) and g 2 (z)? (Hu 1999) g i (z) = ∫ z s n i (z s ) D l D ls / D s dz s

14 Lensing efficiency for source plane?

15

16 (Hu 1999)

17 Sensitivity in each z bin

18 NOT

19 (Hu 1999) Why is g for bin 2 higher? A. More structure along line of sight B. Distances are larger g i (z d ) = ∫ z s 1 n i (z s ) D d D ds / D s dz s

20

21 * *

22 Lensing power spectrum (Hu 1999)

23 Lensing power spectrum Equivalently: P  ii (l) = ∫ g i (z l ) 2 P(l/D l,z) dD l /D l 2 i.e. matter power spectrum at each z, weighted by square of lensing efficiency (Hu 1999)

24

25 Measurement uncertainties 1/2 = rms shear (intrinsic + photon noise) n i = number of galaxies per steradian in bin i (Hu 1999) Cosmic Variance Observational noise

26 (Hu 1999)

27 Sensitivity in each z bin

28 NOT

29 (Hu 1999)

30 Dependence on cosmology Refregier et al SNAP3 ?? A.  m = 0.35 w=-1 B.  m = 0.30 w=-0.7

31 Approximate dependence Increase  8 → A. P  ↓ B. P  ↑ Increase z s → A. P  ↓ B. P  ↑ Increase  m → A. P  ↓ B. P  ↑ Increase  DE (  K =0) → A. P  ↓ B. P  ↑ Increase w → A. P  ↓ B. P  ↑ Huterer et al

32 Effect of increasing w on P  Distance to z –A. Decreases B. Increases

33 Perlmutter et al.1998 Fainter Further away Decelerating Accelerating  m =1, no DE  m =1,  DE =0) == (  m = 0.3,  DE = 0.7, w DE =0)

34 Perlmutter et al.1998 EdS OR w=0 w=-1 Fainter, further Brighter, closer

35 Effect of increasing w on P  Distance to z –A. Decreases B. Increases –When decrease distance, lensing effect decreases Dark energy dominates –A. Earlier B. Later

36

37

38 Effect of increasing w on P  Distance to z –A. Decreases B. Increases –When decrease distance, lensing decreases Dark energy dominates –A. Earlier B. Later Growth of structure –A. Suppressed B. Increased –Lensing A. Increases B. Decreases Net effects: –Partial cancellation decreased sensitivity –Distance wins

39 Approximate dependence Increase  8 → A. P  ↓ B. P  ↑ Increase z s → A. P  ↓ B. P  ↑ Increase  m → A. P  ↓ B. P  ↑ Increase  DE (  K =0) → A. P  ↓ B. P  ↑ Increase w → A. P  ↓ B. P  ↑ Huterer et al

40 Approximate dependence Increase  8 → A. P  ↓ B. P  ↑ Increase z s → A. P  ↓ B. P  ↑ Increase  m → A. P  ↓ B. P  ↑ Increase  DE (  K =0) → A. P  ↓ B. P  ↑ Increase w → A. P  ↓ B. P  ↑ Huterer et al Note modulus

41 Which is more important? Distance or growth? Simpson & Bridle

42 Dependence on cosmology Refregier et al SNAP3 ?? A.  m = 0.35 w=-1 B.  m = 0.30 w=-0.7

43 (Hu 1999)

44 See Heavens astro-ph/0304151 for full 3D treatment (~infinite # bins)

45 (Hu 1999)

46 Parameter estimation for z~2 (Hu 1999)

47 Predict the direction of degeneracy in w versus  m plane

48 Refregier et al SNAP3

49 (Hu 1999)

50 Takada & Jain

51 (Hu 1999)

52 Covariance matrix P 12 is correlated with P 11 and P 22 (ignoring trispectrum contributions) Takada & Jain

53

54 How many redshift bins to use? Ma, Hu & Huterer 5 is enough Modified from

55 Higher order statistics

56 Takada & Jain

57

58 Geometric information Jain & Taylor; Kitching et al. Slide stolen from Tom Kitching www.astro.dur.ac.uk/Cosmology/SISCO/edin_talks/Kitching.PPT

59 Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

60 Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

61 Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

62 Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

63 Some additional tomographic methods Cross-correlation cosmography –Bernstein & Jain astro-ph/0309332 Galaxy-lensing cross correlation –Hu & Jain astro-ph/0312395 Reconstruction of distance and growth –Song; Knox & Song


Download ppt "Weak Lensing Tomography Sarah Bridle University College London."

Similar presentations


Ads by Google