Download presentation
Presentation is loading. Please wait.
Published byAugustine Cox Modified over 9 years ago
1
EURISOL (and the European ISOL roadmap) Yorick Blumenfeld* (CERN) *on leave from IPN Orsay
2
OUTLINE The Framework General Physics Case The “Intermediate Generation” Facilities Results of the EURISOL Design Study Future Initiatives
3
The Framework Radioactive Ion (Rare Isotope) Beams have transformed the landscape of Nuclear Structure over the last quarter century. Major discoveries have revealed unforeseen behaviors of the nucleus Understanding of the nucleus requires a multifaceted approach Low intensities are the major impediments to further progress Fragmentation and ISOL facilities are complementary and should be developed in parallel
4
The Nuclear Chart and Challenges
5
Radioactive beam production: Two complementary methods GANIL/SISSI, GSI, RIKEN, NSCL/MSU GANIL/SPIRAL, REX/ISOLDE, ISAAC/TRIUMF High energy, large variety of species, Poor optical qualities Low energy, chemistry is difficult, good beam qualities IN FLIGHT SELECTION
6
NuPECC recommends the construction of 2 ‘next generation’ RIB infrastructures in Europe, i.e. one ISOL and one in-flight facility. The in- flight machine would arise from a major upgrade of the current GSI facility: FAIR, while EURISOL would constitute the new ISOL facility The Previous LRP The Current European Situation Construction of intermediate generation facilities: SPIRAL2, HIE- ISOLDE, SPES and of FAIR has begun or is about to begin. Design and prototyping of the most specific and challenging parts of EURISOL has been carried out in the framework of EURISOL_DS. EURISOL must go beyond FAIR and offer the best of both worlds : ISOL and Fragmentation
7
ISOL Roadmap in EUROPE 2014-2025 FROM 2025 SPIRAL – LNS - EXCYT TODAY
8
CIME Cyclotron Acceleration of RI Beams E < 25 AMeV, 1 - 8 AMeV for FF Production Caves:: RNB C converter+UC x target 10 14 fissions/s p- & n-rich RNB (transfer, fusion-evaporation, DIC) Superconducting LINAC: Stable-Ion beams E ≤ 14.5 AMeV HI A/q=3, 1mA E ≤ 20 A MeV p,d, 4 He (A/q=2 ions), 5mA Possible extension to A/q=6 ions Heavy-Ion ECR p,d source RFQ LINAG Exp. Area (AEL) Direct beam line CIME- G1/G2 caves Existing GANIL Exp. Area Existing GANIL Accelerators Low energy RNB DESIR
9
EURORIB’08, Giens, June 9-13 Aims of the HIE-ISOLDE upgrade Intensity : Linac 4 @CERN Energy from 3 to 10A MeV Coulex for all RIB Transfer reactions Efficiency low energy + accelerated Selectivity Beam “quality” Reduced phase space Bunching Polarization.....
10
EURORIB’08, Giens, June 9-13 SC linac M. Pasini Max energy for different A/q :
11
The SPES Project @ LNL: The SPES Project @ LNL: a multi-user project Applied Physics with proton beam 70 MeV 550 A (possible upgrade up to 1mA) High intensity proton linac: TRIPS source - TRASCO RFQ 30 mA, 5MeV Neutron facility for Medical, Astrophysics and Material science. Neutron source up to 10 14 n s -1 Thermal neutrons: 10 9 n s -1 cm -2 Production Target: UCx 10 13 fission s -1 ) Primary Beam: 200 A, 40 MeV protons from a 2 exit ports Cyclotron (750 A, 70 MeV ) Re-accelerator: ALPI Superconductive Linac up to 11 AMeV for A=130 Approved for construction
12
TABLE 1). Participants in EURISOL Design Study ParticipantCountryParticipantCountry GANIL (coordinator) FranceInst. Physics VilniusLithuania CNRS/IN2P3FranceWarsaw UniversityPoland INFNItalyInst. Phys. BratislavaSlovakia CERNEuropeU. LiverpoolUnited Kingdom U. C. LouvainBelgiumGSI DarmstadtGermany CEAFranceU. SantiagoSpain NIPNERomaniaCCLRC DaresburyUnited Kingdom U. JyväskyläFinlandPaul Scherrer InstituteSwitzerland L.M.U. München GermanyInst. Phys. LatviaLatvia FZ JülichGermanyStockholm. U. MSLSweden EURISOL DS: 20 Participants 4 1/2 years; 30 M Euros
13
What is EURISOL?
14
= 0.03 = 0.78 Ion sources RFQ 176 MHz HWRs 176MHz Elliptical ISCL 704 MHz 1 GeV/q H-, H+, 3 He++ 1.5 MeV/u 100 keV 60 MeV/q140 MeV/q >200 MeV/q D+, A/q=2 Charge breeder Low-resolution mass-selector UC x target 1+ ion source n-generator = 0.065 = 0.14 = 0.27 = 0.385 QWR ISCL 88 MHz 3 QWRs ISCL 88 MHz 8 HWRs ISCL 176 MHz Spoke ISCL 264 MHz 20-150 MeV/u (for 132 Sn) To low-energy areas Secondary fragmentation target A possible schematic layout for a EURISOL facility 4-MW target station = 0.047 3-spoke ISCL 325 MHz High-resolution mass-selector Bunching RFQ To medium-energy experimental areas = 0.65 Elliptical ISCL 704 MHz = 0.09, = 0.15 H- H+, D+, 3 He++ 9.3- 62.5 MeV/u2.1-19.9 MeV/u To high-energy experimental areas RFQs Charge selector One of several 100-kW direct target stations
15
EURISOL Target Building
16
EURISOL MMW Targets
17
Spoke cavity development @ IPN Orsay 2 prototypes at =0.15 and =0.35 fabricated and successfully tested at 4.2 K. This technology is the basis for the 3- Spoke required by the Driver linac Spoke cavity tuner EURISOL Task 8: Sébastien Bousson – IPN Orsay
18
Secondary Fragmentation of a 132 Sn beam Cross Sections measured at GSI
19
Secondary Fragmentation of 132 Sn at 150A MeV
20
CERN GANIL RUTHEFORD LNL Legnaro
21
Timescale for EURISOL 2010-2012 : Transition period; contacts with funding agencies and political bodies 2012 : Application to be included in ESFRI list (support from NuPECC & LRP necessary) 2013 : Call for preparatory phase 2014-2017 : EURISOL Preparatory Phase 2017 : Choice of Location 2017-2019 : Preparation of TDR 2020-2025 : Construction 2025 : First Beam
22
The “Transition” Period (2010-2013) The EURISOL project office The EURISOL collaboration: (MOU between all laboratories interested in furthering EURISOL; in preparation) The EURISOL User Group (Established with elected executive committee; will federate scientific community and update physics case; A. Bonaccorso, chair ) The EURISOL Network in ENSAR (included in ENSAR application; will coordinate EURISOL focused R&D at current facilities and fund Town Meetings; 150 KE; leader Y. Blumenfeld) The EURISOL work package in TIARA : (included in TIARA application; Define and Prepare R&D platforms for EURISOL; up to 500 KE; leader S. Bousson – Orsay) Requests to NuPNET for pan-European funded R&D through national funding agencies (approx 1ME each – at most 1 to be funded) – Liquid metal target tests – Beam splitter – ECRIS beam merger EC support for global projects: Possibility of EC support up to 1 ME to expand EURISOL into a global (worldwide) project; suggestion from Brussels still to be investigated.
23
Conclusions Major RIB developments are proceeding worldwide (FRIB, TRIUMF, RIKEN, KoRIA…) and competition will be fierce. The LRP must propose an ambitious roadmap to maintain and strengthen Europe’s leadership in the field This plan should be based on FAIR and the “intermediate” ISOL facilities (SPIRAL2, HIE-ISOLDE, SPES) in the near term, and EURISOL in the longer term.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.