Download presentation
Presentation is loading. Please wait.
Published byMaximilian Alexander Modified over 9 years ago
1
Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann & Microsoft Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A
2
outline Entropy Secrecy & Pseudoentropy Unforgeability & Inaccessible Entropy Applications
3
Def: The Shannon entropy of r.v. X is H(X) = E x à X [log(1/Pr[X=x)] H(X) = “Bits of randomness in X (on avg)” 0 · H(X) · log |Supp(X)| Conditional Entropy: H(X|Y) = E y à Y [H(X| Y=y )] Entropy X concentrated on single point X uniform on Supp(X)
4
Conditional Entropy H(X|Y) = E y à Y [H(X| Y=y )] Chain Rule: H(X,Y) = H(Y) + H(X|Y) H(X)-H(Y) · H(X|Y) · H(X) H(X|Y) = 0 iff 9 f X=f(Y).
5
Worst-Case Entropy Measures Min-Entropy: H 1 (X) = min x log(1/Pr[X=x]) Max-Entropy: H 0 (X) = log |Supp(X)| H 1 (X) · H(X) · H 0 (X)
6
outline Entropy Secrecy & Pseudoentropy Unforgeability & Inaccessible Entropy Applications
7
Perfect Secrecy & Entropy Def [Sh49]: Encryption scheme (Enc,Dec) has perfect secrecy if 8 m,m’ 2 {0,1} n Enc K (m) & Enc K (m’) are identically distributed for a random key K. Thm [Sh49]: Perfect secrecy ) |K| ¸ n
8
Perfect Secrecy ) |K| ¸ n Proof: Perfect secrecy ) (M,Enc K (M)) ´ (M,Enc K (M’)) for M,M’ Ã {0,1} n ) H(M|Enc K (M)) = n Decryptability ) H(M|Enc K (M),K) = 0 ) H(M|Enc K (M)) · H(K).
9
Computational Secrecy Def [GM82]: Encryption scheme (Enc,Dec) has computational secrecy if 8 m,m’ 2 {0,1} n Enc K (m) & Enc K (m’) are computationally indistinguishable. ) can have |K| ¿ n.
10
Where Shannon’s Proof Breaks Computational secrecy ) (M,Enc K (M)) ´ c (M,Enc K (M’)) for M,M’ Ã {0,1} n ) “H pseudo (M|Enc K (M))” = n Decryptability ) H(M|Enc K (M)) · H(K). Key point: can have H pseudo (X) À H(X) e.g. X = G(U k ) for PRG G : {0,1} k ! {0,1} n
11
Pseudoentropy Def [HILL90]: X has pseudoentropy ¸ k iff there exists a random variable Y s.t. 1.Y ´ c X 2.H(Y) ¸ k Pseudoentropy Generator: G S Ã {0,1} n X Y ´ c
12
Application of Pseudoentropy Thm [HILL90]: 9 OWF ) 9 PRG Proof outline: OWF X with pseudo-min-entropy ¸ H 0 (X)+poly(n) X with pseudoentropy ¸ H(X)+1/poly(n) PRG hardcore bit [GL89]+hashing repetitions hashing
13
outline Entropy Secrecy & Pseudoentropy Unforgeability & Inaccessible Entropy Applications
14
Unforgeability Crypto is not just about secrecy. Unforgeability: security properties saying that it has hard for an adversary to generate “valid” messages. –Unforgeability of MACs, Digital Signatures –Collision-resistance of hash functions –Binding of commitment schemes Cf. decision problems vs. search/sampling problems.
15
Ex: Collision-resistant Hashing Shrinking Collision Resistance: Given f ÃF, an efficient A cannot output x 1 x 2 such that f(x 1 ) = f(x 2 ) F = { f : {0,1} n ! {0,1} n-k }
16
Ex: Collision-resistant Hashing Shrinking: H(X | F,Y) ¸ k Collision Resistance: From (even a cheating) G’s point of view, X is determined by (F,Y) X has “accessible” entropy 0 F = {f : {0,1} n ! {0,1} n-k } G X Ã {0,1} n Y= F(X) F ÃF X
17
Ex: Collision-resistant Hashing Collision Resistance: H(X |F,Y,S 1 ) = neg(n) for every efficient G *. F = {f : {0,1} n ! {0,1} n-k } G * S 1 Ã {0,1} r Y F ÃF X F -1 (Y) S 2 Ã {0,1} r
18
Measuring Accessible Entropy Goal: A useful entropy measure to capture possibility that H acc (X) ¿ H(X) 1st attempt: X has accessible entropy at most k if there is a random variable Y s.t. 1.Y ´ c X 2.H(Y) · k Not useful! every X is indistinguishable from some Y of entropy polylog(n).
19
Inaccessible Entropy Idea: A generator G has inaccessible entropy if H(G’s outputs from an observer’s perspective) > H(G * ’s outputs from G * ’s perspective) Real Entropy Accessible Entropy
20
Real Entropy Def: The real entropy of G is H(Y 1,….,Y m |Z) i H(Y i | Z,Y 1,…,Y i-1 ) G R Ã {0,1} n Y1Y1 Z Y2Y2 YmYm
21
Accessible Entropy Def: G has accessible entropy at most k, if 8 PPT G * i H(Y i |Z,S 1,S 2,…,S i-1 ) · k Inaccessible entropy = real – accessible entropy Unbounded G * can achieve real entropy. G* Y1Y1 Z Y2Y2 YmYm S1S1 S2S2 SmSm R s.t. G(Z,R)=(Y 1,….,Y m )
22
OWF Inaccessible Entropy Claim: Real entropy = n Accessible entropy < n-log n [cf. Omer’s talk: G(x)=(f(x),x 1,…,x n ) next-bit pseudoentropy n+log n for OWP f] G X Ã {0,1} n f(X) 1 f(X) 2 f(X) n Given a one-way function f : {0,1} n {0,1} n, define X
23
Y m+1 X YnYn 1 0 Y2Y2 1 OWF Inaccessible Entropy Claim: Accessible entropy < n-log n Suppose G * s.t. i H(Y i |S 1,…,S i-1 ) n-log n Then can invert f on input Y’ by sequentially finding S 1,..,S n s.t. Y i =Y’ i (via sampling). High accessible entropy success on random Y=f(X) w.p. 1/poly(n). G* Y1Y1 S1S1 S2S2 SnSn S m+1 1 0 R=Y m+1 Y’ = 0 1 0
24
Real Entropy AB B1B1 A1A1 B2B2 A2A2 BmBm AmAm Def: The real entropy of (A,B) is i H(A i | B 1,A 1,…,B i )
25
Accessible Entropy A*A* B B1B1 A1A1 B2B2 A2A2 BmBm AmAm Tosses coins S i Sends message A i Privately outputs justification W i (e.g. consistent coins of honest A) coins S 1 coins S 2 coins S m What A * does at each round W1W1 W2W2 WmWm
26
Accessible Entropy A*A* B B1B1 A1A1 B2B2 A2A2 BmBm AmAm coins S 1 coins S 2 coins S m W1W1 W2W2 WmWm Def: (A,B) has accessible entropy at most k if for every PPT A * i H(A i |B 1,S 1,B 2,S 2,…,S i-1,B i ) · k Remarks 1.Needs adjustment in case A * outputs invalid justification. 2.Unbounded A * can achieve real entropy. never Assume
27
Ex: Collision-resistant Hashing Real Entropy= H(Y|F)+H(X|Y,F) = H(X|F) = n AB F Ã F F = { f : {0,1} n ! {0,1} n-k } F Y X X Ã {0,1} n Y=F(X)
28
Ex: Collision-resistant Hashing Accessible Entropy= H(Y|F)+H(X|F,S 1 ) · (n-k) + neg(n) A*A* B F Ã F F = { f : {0,1} n ! {0,1} n-k } F Y X toss coins S 1 toss coins S 2
29
outline Entropy Secrecy & Pseudoentropy Unforgeability & Inaccessible Entropy Applications
30
Commitment Schemes
31
m COMMIT STAGE SR
32
m R Commitment Schemes S REVEAL STAGE
33
Commitment Schemes COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K)
34
Security of Commitments COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K) Hiding –Statistical –Computational Binding –Statistical –Computational COMMIT (m) & COMMIT (m’) indistinguishable even to cheating R* Even cheating S * cannot reveal (m,K), (m’,K’) with m m’
35
Statistical Security? COMMIT STAGE accept/ reject SR m 2 {0,1} t REVEAL STAGE (m,K) Hiding –Statistical –Computational Binding –Statistical –Computational Impossible!
36
Statistical Binding COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K) Hiding –Statistical –Computational Binding –Statistical –Computational Thm [HILL90,Naor91]: One-way functions ) Statistically Binding Commitments
37
Statistical Hiding COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K) Hiding –Statistical –Computational Binding –Statistical –Computational Thm [HNORV07]: One-way functions ) Statistically Hiding Commitments Too Complicated!
38
Our Results I Much simpler proof that OWF ) Statistically Hiding Commitments via accessible entropy. Conceptually parallels [HILL90,Naor91] construction of PRGs & Statistically Binding Commitments from OWF. “Nonuniform” version achieves optimal round complexity, O(n/log n) [HHRS07]
39
Our Results II Thm: Assume one-way functions exist. Then: NP has constant-round parallelizable ZK proofs with “black-box simulation” m constant-round statistically hiding commitments exist. ( * due to [GK96,G01], novelty is )
40
Statistically Hiding Commitments & Inaccessible Entropy COMMIT STAGE SR M Ã {0,1} n REVEAL STAGE M Statistical Hiding: H(M|C) = n - neg(n) K C
41
Statistically Hiding Commitments & Inaccessible Entropy COMMIT STAGE S*S* R REVEAL STAGE M Statistical Hiding: H(M|C) = n - neg(n) Comp’l Binding: For every PPT S * H(M|C,S 1 ) = neg(n) “inaccessible entropy for protocols” K C coins S 1 coins S 2
42
OWF ) Statistically Hiding Commitments: Our Proof OWF G with real min-entropy ¸ accessible entropy+poly(n) G with real entropy ¸ accessible entropy+log n statistically hiding commitment done repetitions cut & choose & parallel rep (interactive) hashing [DHRS07] +UOWHFs [NY89,Rom90] “m-phase” commitment
43
Cf. OWF ) Statistically Binding Commitment [HILL90,Nao91] OWF X with pseudo-min-entropy ¸ H 0 (X)+poly(n) X with pseudoentropy ¸ H(X)+1/poly(n) PRG hardcore bit [GL89]+hashing repetitions hashing Statistically binding commitment expand output & translate
44
OWF ) Statistically Hiding Commitments: Our Proof OWF (A,B) with real min-entropy ¸ accessible entropy+poly(n) (A,B) with real entropy ¸ accessible entropy+log n statistically hiding commitment interactive hashing [NOVY92,HR07] repetitions cut & choose (interactive) hashing [DHRS07] +UOWHFs [NY89,Rom90] “m-phase” commitment
45
OWF ) Inaccessible Entropy AB Choose linearly indep. B 1,…,B m à {0,1} m f : {0,1} n ! {0,1} m OWF B1B1 h B 1,Y i X à {0,1} n Y=f(X) Real Entropy = n Can show: Accessible Entropy · n-log n BmBm h B m,Y i X
46
Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BmBm h B m,Y i X BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f) entropy · k entropy · t = n-k-2log n Claim: entropy = neg(n)
47
Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f). t=n-k-2log n Claim: 9 at most one consistent Y s.t. A * can produce a preimage (except w/neg prob,)
48
Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f). t=n-k-2log n Claim: 9 at most one consistent Y s.t. A * can produce a preimage (except w/neg prob,) Im(f) poly(n) Interactive Hashing Thms [NOVY92,HR07]: A * can “control” at most 1 consistent value
49
Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BmBm h B m,Y i X BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f) entropy · k entropy · t = n-k-2log n entropy = neg(n) Analysis holds whenever |f -1 (Y)| ¼ 2 k Choice of k contributes entropy · log n
50
Other Applications Simpler/improved universal one-way hash functions from OWF [HRVW09b] Inspired simpler/improved pseudorandom generators from OWF [HRV09]
51
Conclusion Complexity-based cryptography is possible because of gaps between real & computational entropy. Secrecy pseudoentropy > real entropy Unforgeability accessible entropy < real entropy
52
Research Directions Formally unify inaccessible entropy and pseudoentropy. Complexity-theoretic applications of inaccessible entropy Remove “parallelizable” condition from ZK result. Use inaccessible entropy for new understanding/constructions of MACS and digital signatures.
53
Benefit of Statistical Hiding In most protocols that use commitments: Binding only required during protocol execution –Depends on adversary’s current capabilities –Safe to be computational Hiding may matter long after execution –Adversary may gain computational resources –Hardness assumption may be broken –Statistical hiding ) “everlasting secrecy”
54
Example: Zero Knowledge for NP [Goldreich-Micali-Wigderson86] Hiding ) Zero Knowledge –Verifier learns nothing other than x 2 L Binding ) Soundness –Prover cannot convince verifier if x L 1 2 3 4 5 6 (1,4) PV Corollary: One-Way Functions ) Statistical Zero Knowledge “Arguments” for NP.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.