Presentation is loading. Please wait.

Presentation is loading. Please wait.

Computational Challenges for Finding Big Oil by Seismic Inversion.

Similar presentations


Presentation on theme: "Computational Challenges for Finding Big Oil by Seismic Inversion."— Presentation transcript:

1 Computational Challenges for Finding Big Oil by Seismic Inversion

2 JackBuckskin KaskidaTiber 35,055 Feet Motivation for Better Seismic Imaging Strategy ¼ billion $$$ well

3 Motivation for Better Seismic Imaging Strategy Oil Well Blowouts

4 Overpressure Zone Motivation for Better Seismic Imaging Strategy Oil Well Blowouts = Low Seismic Velocity Zone

5 Motivation for Better Seismic Imaging Strategy Mud Volcanoes 6.3 km 2 13 people killed30,000 people displaced May 29, 2006

6 Computational Challenge Seismic InversionComputational Challenge Seismic Inversion Outline Full waveform InversionFull waveform Inversion Multisource InversionMultisource Inversion

7 Given: d = Lm Seismic Inverse Problem Find: m(x,y,z) Find: m(x,y,z) Soln: min || Lm-d || Soln: min || Lm-d ||2 m = [L L] L d T T L d L dT migration waveforminversion

8 Given: d = Lm Computational Challenges Find: Find: m = [L L] L d T T 20x20x10 km 3 dx=1 m # time steps ~ 10 4 # shots > 10 4 m > 10 unknown velocity values 10 15 Total = d > 10 713words

9 Computational Challenge Seismic InversionComputational Challenge Seismic Inversion Outline Full waveform InversionFull waveform Inversion Multisource InversionMultisource Inversion

10 Multisource Migration: m mig =L T d Forward Model: m =[L T L] -1 L T d Multisrc-Least FWI: Multisource Encoded FWI m’ = m - L T [Lm - d] f ~ [L T L] -1 f Steepest Descent Preconditioned d +Nd =[N L +NL ]m Nd +Nd =[N L +NL ]m 12212112 multisource preconditioner

11 Multiscale Waveform Tomography 1. Collect data d(x,t) 2. Generate synthetic data d(x,t) by FD method syn. 3. Adjust v(x,z) until ||d(x,t)-d(x,t) || minimized by CG. syn. 2 4. To prevent getting stuck in local minima: a). Invert early arrivals initially a). Invert early arrivals initially mute 7 b). Use multiscale: low freq. high freq. b). Use multiscale: low freq. high freq.

12 0 km 20 km 0 km 6 km 3 km/s 6 km/s Boonyasiriwat et al., 2009, TLE

13 3 km/s 6 km/s Initial model 5 Hz 10 Hz 20 Hz Waveform Tomograms 3 km/s 6 km/s 3 km/s 6 km/s 3 km/s 6 km/s 0 km 6 km 0 km 6 km 0 km 6 km 0 km 20 km 6 km

14 Low-pass Filtering 18 (b) 0-15 Hz CSG (c) 0-25 Hz CSG

15 Dynamic Early-Arrival Muting Window 19 0-15 Hz CSG 0-25 Hz CSG Window = 1 s

16 19 0-15 Hz CSG 0-25 Hz CSG Window = 2 s Dynamic Early-Arrival Muting Window

17 20 020 2.5 0 Depth (km) X (km) Traveltime Tomogram 1500 3000 Velocity (m/s) Waveform Tomogram 2.5 0 Depth (km) Results

18 21 020 2.5 0 Depth (km) X (km) Waveform Tomogram 1500 3000 Velocity (m/s) 2.5 0 Depth (km) Vertical Derivative of Waveform Tomogram

19 Kirchhoff Migration Images 22

20 Kirchhoff Migration Images 22

21 Computational Challenge Seismic InversionComputational Challenge Seismic Inversion Outline Full waveform InversionFull waveform Inversion Multisource InversionMultisource Inversion

22 1980 Multisource Seismic Imaging vs copper VLIW Superscalar RISC 197019902010 1 100 100000 10 1000 10000 Aluminum Year 202020001980 CPU Speed vs Year

23 FWI Problem & Possible Soln. Problem: FWI computationally costlyProblem: FWI computationally costly Solution: Multisource Encoded FWISolution: Multisource Encoded FWI Preconditioning speeds up by factor 2-3 Iterative encoding reduces crosstalk

24 Multisource Migration: m mig =L T d Forward Model: Multisource Phase Encoded Imaging d +d =[ L +L ]m 1221 L {d { =[ L +L ](d + d ) 122 1 TT = L d +L d + 122 1 TT L d +L d L d +L d212 1 Crosstalk noise Standard migration TT m = m + (k+1)(k)

25 Multi-Source Waveform Inversion Strategy (Ge Zhan) Generate multisource field data with known time shift Generate synthetic multisource data with known time shift from estimated velocity model Multisource deblurring filter Using multiscale, multisource CG to update the velocity model with regularization Initial velocity model 144 shot gathers

26 3D SEG Overthrust Model (1089 CSGs) 15 km 3.5 km 15 km

27 3.5 km Dynamic QMC Tomogram (99 CSGs/supergather) (99 CSGs/supergather) Static QMC Tomogram (99 CSGs/supergather) 15 km Dynamic Polarity Tomogram (1089 CSGs/supergather) Numerical Results

28 Multisource FWI Summary (We need faster migration algorithms & better velocity models) IO 1 vs 1/20 Cost 1 vs 1/20 or better Resolution dx 1 vs 1 Sig/MultsSig ? Stnd. FWI Multsrc. FWI Stnd. FWI Multsrc. FWI

29 Multisource FWI Summary (We need faster migration algorithms & better velocity models) Future: Multisource MVA, Interpolation, Field Data, Migration Filtering, LSM

30 Research Goals G.T. Schuster (Columbia Univ., 1984) Seismic Interferometry: VSP, SSP, OBS Multisource+Preconditioned RTM+MVA+Inversion+Modeling: TTI 3D RTM, GPU: Stoffa+CSIM, UUtah K. Johnson SCI, PSU, KAUST Shaheen Cornea

31 Multisource S/N Ratio # geophones/CSG # CSGs L [d + d +.. ] 1 2 21 d + d T d, d 2 1 L [d + d + … ] 1 2 T, …. +….

32 Multisrc. Migration vs Standard Migration # iterations Iterative Multisrc. Migration vs Standard Migration vs MS S-1 M ~ ~ # geophones/CSG # CSGs MS MI

33 Crosstalk Term Time Statics Time+Amplitude Statics QM Statics L d +L d L d +L d212 1 TT

34 Summary Time Statics Time+Amplitude Statics QM Statics 1. Multisource crosstalk term analyzed analytically 2. Crosstalk decreases with increasing w, randomness, dimension, iteration #, and decreasing depth dimension, iteration #, and decreasing depth 3. Crosstalk decrease can now be tuned 4. Some detailed analysis and testing needed to refine predictions. predictions. L d +L d L d +L d212 1 TT

35 Fast Multisource Least Squares Kirchhoff Mig.Fast Multisource Least Squares Kirchhoff Mig. Multisource Waveform Inversion (Ge Zhan)Multisource Waveform Inversion (Ge Zhan) Multisource Technology

36 0 Z k(m) 3 0X (km)16 The Marmousi2 Model The area in the white box is used for S/N calculation.

37 0X (km)16 0 Z k(m) 3 0 Z (km) 3 0X (km)16 Conventional Source: KM vs LSM (50 iterations) LSM (100x) KM (1x)

38 0X (km)16 0 Z k(m) 3 0 Z (km) 3 0X (km)16 200-source Supergather: KM vs LSM (300 its.) LSM (33x) KM (1/200x)

39 S/N 0 1 I 300 S/N = 7 The S/N of MLSM image grows as the square root of the number of iterations. MI

40 Fast Multisource Least Squares Migration ( Dai)Fast Multisource Least Squares Migration ( Dai) Multisource Waveform Inversion (Boonyasiriwat)Multisource Waveform Inversion (Boonyasiriwat) Multisource Technology

41 Comparing CIGs 23

42 Comparing CIGs 24 CIG from Traveltime Tomogram CIG from Waveform Tomogram

43 Comparing CIGs 25

44 Comparing CIGs 26 CIG from Traveltime Tomogram CIG from Waveform Tomogram

45 Comparing CIGs 27

46 Comparing CIGs 28 CIG from Traveltime Tomogram CIG from Waveform Tomogram

47 17 Data Pre-Processing 3D-to-2D conversion Attenuation compensation Random noise removal

48 17 Source Wavelet Estimation Pick the water-bottom Stack along the water-bottom to obtain an estimate of source wavelet Generate a stacked section In some cases, source wavelet inversion can be used.

49 17 Gradient Computation and Inversion Multiscale inversion: low to high frequency Dynamic early-arrival muting window Normalize both observed and calculated data within the same shot Quadratic line search method (Nocedal and Wright, 2006) A cubic line search can also be used.


Download ppt "Computational Challenges for Finding Big Oil by Seismic Inversion."

Similar presentations


Ads by Google