Download presentation
Presentation is loading. Please wait.
Published byShavonne Johnston Modified over 10 years ago
1
College of Engineering Discovery with Purpose www.engineering.iastate.edu June 17, 2011 Wind-Related Transmission/Distribution Technologies & Needs James McCalley (jdm@iastate.edu)jdm@iastate.edu REU Short Course on Wind Energy Science, Engineering and Policy
2
Windfarm Electrical System: 2
3
Three transmission/distribution related issues: 3 Windfar m MULTI-FARM COLLECTION NETWORK BACKBONE TRANSMISSION LEVEL 1 LEVEL 2LEVEL 3 LEVEL 2LEVEL 1 Level 1, Multi-turbine collection network: Interconnect turbines to transmission sub. Level 2, Multi-farm collection network: Interconnect windfarms to backbone trans. Level 3, Backbone transmission: Transport energy from resources to load centers.
4
Multi-turbine collector network Common voltage levels are 13.8, 25, 34.5 kV Three-phase, always underground, cable 4
5
Multi-turbine collector network
6
In the midwest, cutting drain tiles is a common problem that windfarm developers must contend with.
7
Level 2: Multifarm collection networks Wind farms site where the wind resources are good, close to existing transmission that has residual capacity. If capacity is insufficient, one of the below happens: Wind farm is not built; Special protection schemes are used; Incremental transmission upgrades are made; Extensive transmission upgrades are implemented. 7 OK when considering 3.7 GW wind out of 10GW total. Not OK when considering 20 GW wind out of 30GW total. There has not been much intentionality at level 2…. yet. But we need to consider Level 2 Designs, before wind grows much more.
8
Level 2: Multifarm collection networks - Examples 8 Depends on backbone transmission (may very well change….)
9
The backbone transmission issue: Where are the people? …But where are the resources? 9
10
NUCLEAR Long-term National Planning & Resource Integration GEOTHERMAL SOLAR Wind BIOMASS CLEAN-FOSSIL Where, when, & how to interconnect? 10
11
Questions on backbone transmission Is transmission expensive? Who pays for transmission? Who permits it? Are there choices for transmission technologies? Have we ever had a national transmission plan? Why do many people feel “NIMBY” for transmission? Why not just put it underground? Transmission raises cost of energy at sending end and reduces it at receiving end why does sending end generally like it & receiving end often does not? If a national transmission superhighway lowers average cost of energy for the nation, why not build it? 11
12
Transmission Technologies HVAC: 69kV, 115kV, 138kV, 161kV and 230kV EHVAC: 345kV, 500kV, 765kV Long distance must be overhead due to high line charging. HVDC: 500kV, 600kV, 800kV, Today, all high-capacity HVDC is thyristor-based Overhead DC lines less expensive than AC lines but higher termination investment cost. 400 miles is approximate breakover distance. Intermediate terminals (on-off ramps) are expensive. Use of IGBT-based voltage-source converters (lite) alleviates this but only at lower capacities. Long-distance HVDC underground bulk transmission is possible. Underground Superconducting Pipe Regional Transmission: HSIL, GIL, HVDC-lite 12
13
Transmission Technologies Fig. 4: Cost comparisons between HVDC and EHVAC for 6000 MW of capacity 13
14
Superconducting pipe 14
15
Tres Amigas 15
16
American Superconductor 16
17
AEP Conceptual 765--kV overlay for wind integration 17
18
18
19
20% Strong West 20% Distributed 20% Strong Offshore 30% 19
20
20
21
30% 20% Strong West 20% Distributed 20% Strong Offshore Most Economical + RPS 21
22
22
23
Criteria for a national overlay design Facilitate low-carbon resource development Move generation to load centers Low total costs (investment + production) Reduce overall national energy costs Avoid “pockets” of high energy costs Minimal environmental impact Resilient to large-scale disruptions Flexible for adaptation to future infrastructure 23
24
Green Power Express 24 Cost: $10 billion Voltage: 765 kV Mileage: 3000 miles Who: ITC Proposed date: 2020 Capacity: 12000 MW
25
SPP EHV Overlay - Ultimate 25
26
ERCOT - CREZ 26
27
PacifiCorp Gateway Project 27
28
NREL’s Eastern Wind Integration and Transmission 28
29
Background A Brief Introduction of Our Proposed Study Process: 1.Determine 40 years’ generation and load portfolio using NETPLAN. Transmission capacities = inf. 2.Identify source/sink nodes under certain criteria 3.Obtain an initial transmission candidate topology (graph theory) Get a min cost spanning tree connect all nodes; Apply “reliability” constraints like N-1 security and rule of 3 4.Optimization. Determine capacities. Discard those arcs with no investment. Can coordinate with the first step 5.Transmission technology selection. 6.Production cost simulation 7.Power flow, stability studies, etc.
30
Identifying Futures Key drivers Examples 30
31
References J. McCalley, W. Jewell, T. Mount and D. Osborn, “Technologies, Tools, and Procedures for Energy Systems Planning at the National Level,” to appear in Power and Energy Magazine. Slides from Midwest ISO Engineering Presentations in EE 552 (2008 and 2010). McCalley lecture notes from EE 552. N. Reddy, “Superconductor Electricity Pipelines: A compelling solution to today’s long- haul transmission challenges,” Right of Way, May/June, 2010, pp. 26-33, available at www.irwaonline.org/EWEB/upload/may_web_SuperConductor.pdf. www.irwaonline.org/EWEB/upload/may_web_SuperConductor.pdf R. Dunlop, R. Gutman, and P. Marchenko, “Analytical Development of Loadability Characteristics for EHV and UHV Transmission Lines,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No. 2, March/April 1979. R. Gutman, E. Wilcox, 21st Century Transmission Planning: The Intersection of Engineering, Economics, and Environment,” CIGRE, 2009, Calgary. J. Fleeman, R. Gutman, M. Heyeck, M. Bahrman, and B. Normark, “EHV AC and HVDC Transmission Working Together to Integrate Renewable Power,” CIGRE Paper 978-2- 85873-080-3, 2009. 31
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.