Download presentation
Presentation is loading. Please wait.
Published byDominick Marshall Modified over 9 years ago
1
DEPFET detectors for future colliders. Activities at IFIC, Valencia Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales de Partículas Universitat de Barcelona C. Mariñas, IFIC, CSIC-UVEG Carlos Mariñas, IFIC, CSIC-UVEG
2
Outlook General requirements for future colliders DEPFET: Fundamentals DEPFET: Basics Characterization: Matrices: PXD4/PXD5/PXD6 production Single Pixel Test Beam Data analysis ILC simulation (see M. Vos talk) Thermal studies ILC/SuperBelle DEPFET thermal mock-up Simulation DEPFET activities at IFIC Pixel detectors for future colliders IFIC in the DEPFET Collaboration Conclusions C. Mariñas, IFIC, CSIC-UVEG
3
Vertexing in future colliders C. Mariñas, IFIC, CSIC-UVEG This requirements impose unprecedented constraints on the detector: High granularity Fast read-out Low material budget Low power consumption This requirements impose unprecedented constraints on the detector: High granularity Fast read-out Low material budget Low power consumption Vertexing in future colliders requires excellent vertex reconstruction and efficient heavy quark flavour tagging using low momentum tracks DEPFET Measurements made on realistic DEPFET prototypes have demonstrated that the concept is one of the principal candidates to meet these challenging requirements DEPFET Measurements made on realistic DEPFET prototypes have demonstrated that the concept is one of the principal candidates to meet these challenging requirements
4
DEPFET principle C. Mariñas, IFIC, CSIC-UVEG Each pixel is a p-channel FET on a completely depleted bulk A deep n-implant creates a potential minimum for electrons under the gate (internal gate) Signal electrons accumulate in the internal gate and modulate the transistor current (400pA/e - ) Accumulated charge can be removed by a clear contact Each pixel is a p-channel FET on a completely depleted bulk A deep n-implant creates a potential minimum for electrons under the gate (internal gate) Signal electrons accumulate in the internal gate and modulate the transistor current (400pA/e - ) Accumulated charge can be removed by a clear contact Fully depleted Large signal Fast signal collection Low capacitance, internal amplification Low noise Transistor ON only during readout Low power Complete clear No reset noise Fully depleted Large signal Fast signal collection Low capacitance, internal amplification Low noise Transistor ON only during readout Low power Complete clear No reset noise
5
Introducing the Valencia’s set up Faraday cage PC for data acquisition Stack of power supplies Laser Motorstages XYZ Complete system for air and liquid cooling ◦Cooling blocks ◦Aluminium coils Pulse generator C. Mariñas, IFIC, CSIC-UVEG
6
Matrix characterization C. Mariñas, IFIC, CSIC-UVEG Full electrical optimization of matrices: This implies scans over a wide range of the operating voltages to achieve the best signal-to-noise ratio. Clear High/Low Gate ON/OFF Back Bulk Cleargate Source Full electrical optimization of matrices: This implies scans over a wide range of the operating voltages to achieve the best signal-to-noise ratio. Clear High/Low Gate ON/OFF Back Bulk Cleargate Source Calibration of the system using radioactive sources Gain of the system ENC Calibration of the system using radioactive sources Gain of the system ENC Laser scans: Charge collection uniformity
7
Already tested at IFIC PXD4 CLGClocked Cleargate NHE 38x30μm 2 PXD5 CCGCommon Cleargate LE 32x24μm 2 Future PXD6? C3GCapacitive Coupled Cleargate 24x24μm 2 ILC design C. Mariñas, IFIC, CSIC-UVEG
8
DEPFET Single-pixel (under construction) D1 D2 S G1 G2Cl Clg Blk Clg C. Mariñas, IFIC, CSIC-UVEG Inner structureSet-up Better understanding of new structures Different geometries (L- gate) Implants Better understanding of new structures Different geometries (L- gate) Implants Direct access to the system’s parameters Complete clear Charge collection Noise Direct access to the system’s parameters Complete clear Charge collection Noise
9
Test Beam C. Mariñas, IFIC, CSIC-UVEG
10
Test Beam: Our role C. Mariñas, IFIC, CSIC-UVEG Full electrical characterization of one DUT Participate in the assembly and allignment of the telescope Parallel set-up in control room Analysis of data Test Beam Coordinators 2008 and 2009 (M.Vos) BEAM 120 GeV ∏ x y z
11
Test Beam: Measurements Voltage scans: Cross-check optimal settings ◦V Bias to the wafer 150-220V ◦V Edge ◦V ClearHigh Angular scan: Resolution vs. Cluster size ◦-5, -4, -3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 9, 12, 18, 36 Beam energy scan: Separation “multi-scattering- intrinsic resolution” ◦20, 40, 60, 80, 120 GeV Large statistics ◦Charge collection uniformity ◦3 Mevents in nominal conditions C. Mariñas, IFIC, CSIC-UVEG
12
T.B. Data analysis C. Mariñas, IFIC, CSIC-UVEG d0 (32x24) d1 (32x24) d2 (24x24) d3* (32x24) d4 (32x24) d5 (32x24) Sig3x3(ADU)133914971704175715081654 Noise (ADU)12,713,412,713,412,813,2 SNR105112134131118125 SeedSignal(A DU) 69%56%59%61%63%64% ENC (e - )345326286277309290 g q (pA/e - )283316360372319350 Preliminary Seed signal Preliminary Residual MS Tel Int, m) Beam Energy (GeV) Distance (m) Entries total =2,5m
13
Thermal studies: Simulation and measurements C. Mariñas, IFIC, CSIC-UVEG First DEPFET thermal mock-up Thermal simulation
14
C. Mariñas, IFIC, CSIC-UVEG Thermal measurements Influence of conduction T of cooling blocks Bump bonding Influence of convection Air speed Air temperature Study of new materials Thermal measurements Influence of conduction T of cooling blocks Bump bonding Influence of convection Air speed Air temperature Study of new materials Power (W) Temperature (ºC) Air speed (m/s) Temperature (ºC) T normalized (K/mm 2 ) Power (W) New materials
15
C. Mariñas, IFIC, CSIC-UVEG Thermal simulation Model implemented in SolidWorks for future mechanical studies ANSYS studies calibrated with real data Thermal simulation Model implemented in SolidWorks for future mechanical studies ANSYS studies calibrated with real data
16
A couple of movies… C. Mariñas, IFIC, CSIC-UVEG Switching mechanism is introduced Influence of air and liquid cooling studies
17
Conclusions Vertexing in Future Colliders ◦Very hard conditions Radiation (10MRad for SuperBelle) Background Reduced material budget Unprecedented granularity Power consumption and heat dissipation ◦Improvement of the detector’s performance is needed New generation of pixel detectors try to cope with this requirements DEPFET: One of the most promising technologies for vertexing and tracking C. Mariñas, IFIC, CSIC-UVEG
18
Conclusions: DEPFET in Valencia C. Mariñas, IFIC, CSIC-UVEG Matrix characterization ◦2 different generations characterized ◦Full electrical optimization ◦Calibration ◦Charge collection uniformity ◦Working on Single Pixel set-up Test Beam ◦Optimization of DUT ◦Instalation and alignment of the telescope ◦Data analysis Thermal studies ◦DEPFET thermal mock-up ◦Study of new materials for better cooling ◦Influence of air/liquid cooling ◦Simulation
19
Backup slides C. Mariñas, IFIC, CSIC-UVEG
20
Mechanics 1. Support structures: ◦FEA models of mechanical properties Natural frequencies Rigidity Stability Deformations ◦Validation with mock-up 2. Module: ◦Simulations using FEA: ( Finite Element Analysis ) Mechanical effects: Strenght of module Thermal effects: Cooling ◦Validation with prototypes C. Mariñas, IFIC, CSIC-UVEG
21
Competitors for SuperBelle Strip detectors (DSSD) Shorter strips Fast readout (higher noise) Cannot be thinned Hybrid pixel detectors (ATLAS type) Good readout speed and granularity Too much material Pixel detectors with frame readout High granularity Low mass (50 microns) Slow frame readout (rolling shutter) C. Mariñas, IFIC, CSIC-UVEG DEPFET
22
Competitors for ILC CCD Small signal Cryogenic operation Radiation damage (trapping) CMOS sensors: MAPS/CAPS Only small chips possible Dead material in periphery Silicon On Insulator (3D integration) Thick depleted sensor (large signal, fast charge collection) Only small chips possible Back-gate effect (depletion voltage couples to FET gate) C. Mariñas, IFIC, CSIC-UVEG
23
Double pixel structure C. Mariñas, IFIC, CSIC-UVEG
24
Gain and noise Ba-133 (30keV -ray) → 310.4 ADC Units Cd-109 (22keV -ray) → 209.9 ADC Units E (keV) ADU 2230 310.4 209.9 FIT y=a+ bx Slope=Gain b=12.5 ADC/keV NoiseGainEnergy to create e - h C. Mariñas, IFIC, CSIC-UVEG
25
S/N for a MIP 1.- ATLAS supposition: 1 MIP → 22300 pairs e - h in 285μm of Si 2.- Our DEPFET has 450μm of Si 3.- The scale factor between Ba-133 30keV and a MIP is: 4.- The S/N of 30keV Ba-133 ray scaled to a MIP: C. Mariñas, IFIC, CSIC-UVEG
26
Noise in current 1.- ADC dynamic range: 2 V – 14 bits -> 2.- trans-impedance amplifier gain = 1 V / 50 A 3.- 15 ADC counts of noise C. Mariñas, IFIC, CSIC-UVEG
27
Introducing the device Switchers A (Gate) and B (Clear) for CLG A-GATEB-CLEAR CURO C. Mariñas, IFIC, CSIC-UVEG
28
CLG vs CCG V Cleargate-Low V Cleargate-High Amp/mV Time/ms V Clear-High V Clear-Low Clocked- Cleargate V Common-Cleargate V Clear-High V Clear-Low Common- Cleargate C. Mariñas, IFIC, CSIC-UVEG
29
Effect on spectrum #Entries ADU Signal peak Incomplete clear Noise peak Leackage Current Background C. Mariñas, IFIC, CSIC-UVEG
30
Amplifiers OUT IN - 5V 1.8V1.3V - 3.2V - 8.2V V substr 39kΩ I in AD8015 AD8129 5V14V +IN -IN REF FB >2V 2kΩ18kΩ 6mV R10 R50 150p F 7V - 7V C. Mariñas, IFIC, CSIC-UVEG
31
10V C. Mariñas, IFIC, CSIC-UVEG
33
Double pixel structure Actual size of two pixels Double pixel cell 33 x 47 µm 2 C. Mariñas, IFIC, CSIC-UVEG
34
V DRAIN V GATE GND 55 Fe Light PulsersSequencer ShaperADC PC C. Mariñas, IFIC, CSIC-UVEG
35
CDS Correlated Double Sampling Scheme C. Mariñas, IFIC, CSIC-UVEG
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.