Download presentation
Presentation is loading. Please wait.
Published byGavin Barrett Modified over 10 years ago
1
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and H.T. Janka, arXiv:0712.3000, in press at PRD
2
A “petite” supernova: ONeMg Small progenitor: 8-10 M sun Up to 20% of all SNe! –Next galactic SN? Sharp density step at base of He shell He shellONeMg core Plot from Janka, Marek, Kitaura,JankaMarekKitaura AIP Conf.Proc.937:144-154,2007 Poelarends et al., arXiv:0705.4643 K. Nomoto, Astrophys. J. 277, 791–805 (1984).
3
Easier explosion –Little resistance from envelope Faster shockwave Kitaura, Janka, Hillebrandt, Astron. Astrophys. 450 (2006) 34 5 ONeMg, 8.8 M sun Fe, 15 M sun shock Buras, Rampp, Janka, Kifonidis, Astron. Astrophys. 447, 1049 (2006)
4
The simulation Calculates time-evolved density profile and neutrino flux Uses 8.8 M sun progenitor model from K. Nomoto Spherical symmetry PROMETHEUS/VERTEX code –variable Eddington factor solver for the neutrino transport –state-of-the-art treatment of neutrino-matter interactions. Particular effort was made to implement nuclear burning and electron capture rates with sufficient accuracy to ensure a smooth continuation, without transients, from the progenitor evolution to core collapse. K. Nomoto, Astrophys. J. 277, 791–805 (1984).
5
Electron number density, n e : –relativistic speed of shock t=0,50,100,….,700 ms 0 ms 100 ms 250 ms 700 ms post-shock pre-shock
6
Hierarchy of average energies –Oscillation effects spectrum permutation
7
Oscillations: masses and mixings Normal hierarchy, m 2 32 >0 Inverted hierarchy, m 2 32 <0 Sin 2 2 13 <0.15 CHOOZ, PLB466, 1999 m
8
In medium: frequencies Kinetic: Forward scattering (refraction) –on electrons n e electron number density –On neutrinos (“self interaction”) N number density, R decoupling radius
9
Rule of thumb: scattering terms are relevant only if larger than kinetic: e ¸ ji ¸ ji ¸ ji non-linear, collective effects –indirect dependence on matter profile e ~ ji MSW resonance –Strong dependence on matter profile (n e ) Mikheev, Smirnov, Wolfenstein (1985,1978) Duan, Fuller, Carlson and Qian, Phys. Rev.D 74, 105014 (20 06)
10
Post-shock (t>300 ms) decouples first: effects factorize t=0,50,100,….,700 ms /(2 1/2 G F ) = n eff e /(2 1/2 G F ) = n e 31 /(2 1/2 G F ) 21 /(2 1/2 G F ) “Supernova” resonance, 13 “solar” resonance End of self- interaction effects
11
Self interaction effects Effects of are negligible if: Hierarchy is normal ( m 2 31 >0) They decouple before the MSW resonance ( e ~ 2 >> ) 13 is small Reduction to MSW resonances only! Hannestad, Raffelt, Sigl and Wong, Phys.Rev.D74:105010,2006 Raffelt and Smirnov, Phys.Rev.D76:081301,2007 Fogli, Lisi, Marrone and Mirizzi, arXiv:0707.1998
12
MSW: P H, P L as switches Eigenvalues PHPH PLPL e conversion Final e survival 01 e 3 ~0 00 e 3 ~0 10 e 2 sin 2 12 ~ 0.32 11 e 1 cos 2 12 ~ 0.68 x = , Dighe and Smirnov, Phys.Rev.D62:033007,2000
13
Transition probability Depends on density profile: Steeper profile, smaller mixing more transition (non-adiabatic, less conversion) P H 1 PHPH 13 ! 0 dn e /dr ! 1
14
Pre-shock All frequencies relevant: numerical approach t=0,50,100,….,700 ms /(2 1/2 G F ) = n eff e /(2 1/2 G F ) = n e 31 /(2 1/2 G F ) 21 /(2 1/2 G F ) e ~ ~ 31 Duan, et al. arXiv:0710.1271, Dasgupta et al., arXiv:0801.1660, analytical interpretation
15
MSW-equations still valid with effective, step- like P H,P L –P L = (E-12 MeV) –P H = (E-15 MeV) p=cos 2 12 ~ 0.68 at E >15 MeV –Valid for any 13 P( e 1 ) P( e 2 ) P( e 3 ) sin 2 13 =0.01 Duan, Fuller, Carlson, and Qian, arXiv:0710.1271 Duan, private comm. P L =0P L =1 P H =0P H =1
16
Oscillations in the Earth e flux in a Earth-shielded detector: Production point Conversion in star Regeneration in Earth: P( 2 ! e )-sin 2 12 =+ C.L. & A.Yu. Smirnov, Nucl.Phys.B616:307-348,2001
17
What to expect: ONeMg: early (~1 s) increase of conversion (profile becomes smoother) ONeMg
18
Fe: late (~5 s) decrease of conversion (profile becomes steeper due to shock) Fe Schirato & Fuller, astro-ph/0205390
19
Intermediate: Slow (three steps) decreas e Small: No decreas e Large: Fast decreas e Fe supernova t=60 m s t=450 ms t=700 ms Results: jumping probabilites E=20 MeV sin 2 13
20
P L (20 MeV) = 1 pre-shock 0 post-shock Fe SN: P L =0 at all times
21
e survival probability: fast, slower, slowest.. sin 2 13 =10 -2 sin 2 13 =10 -5 sin 2 13 =6 10 -4 Fe-core SN
22
Earth effect: fast.. Fe SN: no effect t=60 m s t=700 m s t=450 m s (F D e -F e )/F e
23
..slower.. Fe SN: no effect
24
..slowest Fe SN: opposite sign at 60 ms, similar effect later
25
Observed spectra ONeMgFe t=60 m s t=700 m s t=450 m s
26
ONeMg vs Fe: differences ONeMgFe Pre-shock: ~68% e survival <32% e survival shock modulations before 1 s (faster for larger 13 ) Shock modulations only after 3-5 s Shock progressive decrease of survival probability Shock sudden increase of survival probability Shock disappearance of Earth effect Shock appearance of Earth effect
27
Why important? Unique way to test the density step (O-He transition) –Tomography! Provide progenitor identification (ONeMg or Fe) for obscured SNe Necessary to interpret data from a ONeMg SN –Test collapse models, neutrino emission, etc. –learn on 13, hierarchy, exotica, …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.