Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 1 Chapter 7 Skeletal Tissues.

Similar presentations


Presentation on theme: "Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 1 Chapter 7 Skeletal Tissues."— Presentation transcript:

1 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 1 Chapter 7 Skeletal Tissues

2 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 2 Types of Bones Structurally, there are four types of bones (Figure 7-1): Structurally, there are four types of bones (Figure 7-1):  Long bones - A  Flat bones - B  Short bones - C  Irregular bones - D Bones serve various needs, and their size, shape, and appearance will vary to meet those needs Bones serve various needs, and their size, shape, and appearance will vary to meet those needs

3 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 3 Types of Bones Bones vary in their proportions of compact and cancellous (spongy) bone; compact bone is dense and solid in appearance, whereas cancellous bone is characterized by open space partially filled with needle-like structures Bones vary in their proportions of compact and cancellous (spongy) bone; compact bone is dense and solid in appearance, whereas cancellous bone is characterized by open space partially filled with needle-like structures

4 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 4 Types of Bones Parts of a long bone Parts of a long bone (Figure 7-2) (Figure 7-2)  Diaphysis Main shaft of long bone Main shaft of long bone Hollow, cylindrical shape and thick, compact bone Hollow, cylindrical shape and thick, compact bone Function is to provide strong support without cumbersome weight Function is to provide strong support without cumbersome weight

5 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 5 Types of Bones Parts of a long bone (cont.) Parts of a long bone (cont.)  Epiphyses Both ends of a long bone, made of cancellous bone filled with marrow Both ends of a long bone, made of cancellous bone filled with marrow Bulbous shape Bulbous shape Function is to provide attachments for muscles and give stability to joints Function is to provide attachments for muscles and give stability to joints

6 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 6 Types of Bones Parts of a long bone (cont.) Parts of a long bone (cont.)  Articular cartilage Layer of hyaline cartilage that covers the articular surface of epiphyses Layer of hyaline cartilage that covers the articular surface of epiphyses Function is to cushion jolts and blows Function is to cushion jolts and blows

7 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 7 Types of Bones Parts of a long bone (cont.) Parts of a long bone (cont.)  Periosteum Dense, white, fibrous membrane that covers bone Dense, white, fibrous membrane that covers bone Attaches tendons firmly to bones Attaches tendons firmly to bones Contains cells that form and destroy bone Contains cells that form and destroy bone Contains blood vessels important in growth and repair Contains blood vessels important in growth and repair Contains blood vessels that send branches into bone Contains blood vessels that send branches into bone Essential for bone cell survival and bone formation Essential for bone cell survival and bone formation

8 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 8 Types of Bones Parts of a long bone (cont.) Parts of a long bone (cont.)  Medullary (or marrow) cavity Tubelike, hollow space in diaphysis Tubelike, hollow space in diaphysis Filled with yellow marrow in adult Filled with yellow marrow in adult  Endosteum—thin epithelial membrane that lines medullary cavity

9 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 9 Types of Bones Short, flat, and irregular bones Short, flat, and irregular bones  Inner portion is cancellous bone, covered on the outside with compact bone  Spaces inside cancellous bone of a few irregular and flat bones are filled with red marrow

10 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 10 Bone Tissue Most distinctive form of connective tissue Most distinctive form of connective tissue Extracellular components are hard and calcified Extracellular components are hard and calcified Rigidity of bone allows it to serve its supportive and protective functions Rigidity of bone allows it to serve its supportive and protective functions Tensile strength is nearly equal to cast iron at less than one third the weight Tensile strength is nearly equal to cast iron at less than one third the weight

11 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 11 Bone Tissue Composition of bone matrix Composition of bone matrix  Inorganic salts Hydroxyapatite—highly specialized chemical crystals of calcium and phosphate contribute to bone hardness Hydroxyapatite—highly specialized chemical crystals of calcium and phosphate contribute to bone hardness Slender, needle-like crystals are oriented to most effectively resist stress and mechanical deformation Slender, needle-like crystals are oriented to most effectively resist stress and mechanical deformation Magnesium and sodium are also found in bone Magnesium and sodium are also found in bone

12 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 12 Bone Tissue Composition of bone matrix (cont.) Composition of bone matrix (cont.)  Measuring bone mineral density  Organic matrix Composite of collagenous fibers and an amorphous mixture of protein and polysaccharides called ground substance Composite of collagenous fibers and an amorphous mixture of protein and polysaccharides called ground substance Ground substance is secreted by connective tissue cells Ground substance is secreted by connective tissue cells Adds to overall strength of bone and gives some degree of resilience to the bone Adds to overall strength of bone and gives some degree of resilience to the bone

13 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 13 Microscopic Structure of the Bone (Figure 7-3) Compact bone Compact bone  Contains many cylinder-shaped structural units called osteons, or Haversian systems  Osteons surround canals that run lengthwise through bone and are connected by transverse Volkmann’s canals  Living bone cells are located in these units, which constitute the structural framework of compact bone  Osteons permit delivery of nutrients and removal of waste products

14 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 14 Microscopic Structure of the Bone Compact bone (cont.) Compact bone (cont.)  Four types of structures make up each osteon: Lamella—concentric, cylinder-shaped layers of calcified matrix Lamella—concentric, cylinder-shaped layers of calcified matrix Lacunae—small spaces containing tissue fluid in which bone cells are located between hard layers of the lamella Lacunae—small spaces containing tissue fluid in which bone cells are located between hard layers of the lamella Canaliculi—ultrasmall canals radiating in all directions from the lacunae and connecting them to each other and to the Haversian canal Canaliculi—ultrasmall canals radiating in all directions from the lacunae and connecting them to each other and to the Haversian canal Haversian canal—extends lengthwise through the center of each osteon and contains blood vessels and lymphatic vessels Haversian canal—extends lengthwise through the center of each osteon and contains blood vessels and lymphatic vessels

15 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 15

16 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 16 Microscopic Structure of the Bone Cancellous bones (Figure 7-4) Cancellous bones (Figure 7-4)  No osteons in cancellous bone; instead, it has trabeculae  Nutrients are delivered and waste products removed by diffusion through tiny canaliculi  Bony spicules are arranged along lines of stress, enhancing the bone’s strength

17 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 17 Microscopic Structure of the Bone Blood supply Blood supply  Bone cells are metabolically active and need a blood supply, which comes from the bone marrow in the internal medullary cavity of cancellous bone  Compact bone, in addition to bone marrow and blood vessels from the periosteum, penetrate bone and then, by way of Volkmann’s canals, connect with vessels in the Haversian canals

18 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 18 Microscopic Structure of the Bone Types of bone cells Types of bone cells  Osteoblasts Bone-forming cells found in all bone surfaces Bone-forming cells found in all bone surfaces Small cells synthesize and secrete osteoid, an important part of the ground substance Small cells synthesize and secrete osteoid, an important part of the ground substance Collagen fibrils line up in osteoid and serve as a framework for the deposition of calcium and phosphate Collagen fibrils line up in osteoid and serve as a framework for the deposition of calcium and phosphate

19 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 19 Microscopic Structure of the Bone Types of bone cells (cont.) Types of bone cells (cont.)  Osteoclasts (Figure 7-5) Giant multinucleate cells Giant multinucleate cells Responsible for the active erosion of bone minerals Responsible for the active erosion of bone minerals Contain large numbers of mitochondria and lysosomes Contain large numbers of mitochondria and lysosomes  Osteocytes—mature, nondividing osteoblast surrounded by matrix, lying within lacunae (Figure 7-6)

20 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 20 Bone Marrow Specialized type of soft, diffuse connective tissue; called myeloid tissue Specialized type of soft, diffuse connective tissue; called myeloid tissue Site for the production of blood cells Site for the production of blood cells Found in medullary cavities of long bones and in the spaces of spongy bone Found in medullary cavities of long bones and in the spaces of spongy bone

21 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 21 Bone Marrow Two types of marrow are present during a person’s lifetime: Two types of marrow are present during a person’s lifetime:  Red marrow Found in virtually all bones in an infant’s or child’s body Found in virtually all bones in an infant’s or child’s body Functions to produce red blood cells Functions to produce red blood cells  Yellow marrow As an individual ages, red marrow is replaced by yellow marrow As an individual ages, red marrow is replaced by yellow marrow Marrow cells become saturated with fat and are no longer active in blood cell production Marrow cells become saturated with fat and are no longer active in blood cell production

22 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 22 Bone Marrow The main bones in an adult that still contain red marrow include the ribs, bodies of the vertebrae, the humerus, the pelvis, and the femur The main bones in an adult that still contain red marrow include the ribs, bodies of the vertebrae, the humerus, the pelvis, and the femur Yellow marrow can alter to red marrow during times of decreased blood supply, such as with anemia, exposure to radiation, and certain diseases Yellow marrow can alter to red marrow during times of decreased blood supply, such as with anemia, exposure to radiation, and certain diseases

23 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 23 Functions of Bone Support—bones form the framework of the body and contribute to the shape, alignment, and positioning of the body parts Support—bones form the framework of the body and contribute to the shape, alignment, and positioning of the body parts Protection—bony “boxes” protect the delicate structures they enclose Protection—bony “boxes” protect the delicate structures they enclose Movement—bones with their joints constitute levers that move as muscles contract Movement—bones with their joints constitute levers that move as muscles contract Mineral storage—bones are the major reservoir for calcium, phosphorus, and other minerals Mineral storage—bones are the major reservoir for calcium, phosphorus, and other minerals Hematopoiesis—blood cell formation is carried out by myeloid tissue Hematopoiesis—blood cell formation is carried out by myeloid tissue

24 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 24 Regulation of Blood Calcium Levels Skeletal system serves as a storehouse for about 98% of body calcium reserves Skeletal system serves as a storehouse for about 98% of body calcium reserves  Helps maintain constancy of blood calcium levels Calcium is mobilized and moves into and out of blood during bone remodeling Calcium is mobilized and moves into and out of blood during bone remodeling During bone formation, osteoblasts remove calcium from blood and lower circulating levels During bone formation, osteoblasts remove calcium from blood and lower circulating levels During breakdown of bone, osteoclasts release calcium into blood and increase circulating levels During breakdown of bone, osteoclasts release calcium into blood and increase circulating levels

25 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 25 Regulation of Blood Calcium Levels Skeletal system (cont.) Skeletal system (cont.)  Homeostasis of calcium ion concentration essential for the following: Bone formation, remodeling, and repair Bone formation, remodeling, and repair Blood clotting Blood clotting Transmission of nerve impulses Transmission of nerve impulses Maintenance of skeletal and cardiac muscle contraction Maintenance of skeletal and cardiac muscle contraction

26 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 26 Regulation of Blood Calcium Levels Mechanisms of calcium homeostasis Mechanisms of calcium homeostasis  Parathyroid hormone Primary regulator of calcium homeostasis Primary regulator of calcium homeostasis Stimulates osteoclasts to initiate breakdown of bone matrix and increase blood calcium levels Stimulates osteoclasts to initiate breakdown of bone matrix and increase blood calcium levels Increases renal absorption of calcium from urine Increases renal absorption of calcium from urine Stimulates vitamin D synthesis Stimulates vitamin D synthesis

27 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 27 Regulation of Blood Calcium Levels Mechanisms of calcium homeostasis (cont.) Mechanisms of calcium homeostasis (cont.)  Calcitonin Protein hormone produced in the thyroid gland Protein hormone produced in the thyroid gland Produced in response to high blood calcium levels Produced in response to high blood calcium levels Stimulates bone deposition by osteoblasts Stimulates bone deposition by osteoblasts Inhibits osteoclast activity Inhibits osteoclast activity Far less important in homeostasis of blood calcium levels than parathyroid hormone Far less important in homeostasis of blood calcium levels than parathyroid hormone

28 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 28 Development of Bone Osteogenesis—development of bone from small cartilage model to an adult bone Osteogenesis—development of bone from small cartilage model to an adult bone Intramembranous ossification Intramembranous ossification  Occurs within a connective tissue membrane  Flat bones begin when groups of cells differentiate into osteoblasts  Osteoblasts are clustered together in centers of ossification  Osteoblasts secrete matrix material and collagenous fibrils

29 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 29 Development of Bone Intramembranous ossification (cont.) Intramembranous ossification (cont.)  Large amounts of ground substance accumulate around each osteoblast  Collagenous fibers become embedded in the ground substance and constitute the bone matrix  Bone matrix calcifies when calcium salts are deposited  Trabeculae appear and join in a network to form spongy bone  Apposition growth occurs by adding of osseous tissue

30 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 30 Development of Bone Endochondral ossification (Figure 7-8) Endochondral ossification (Figure 7-8)  Most bones begin as a cartilage model, with bone formation spreading essentially from the center to the ends  Periosteum develops and enlarges, producing a collar of bone  Primary ossification center forms  Blood vessel enters the cartilage model at the midpoint of the diaphysis

31 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 31 Development of Bone Endochondral ossification (cont.) Endochondral ossification (cont.)  Bone grows in length as endochondral ossification progresses from the diaphysis toward each epiphysis  Secondary ossification centers appear in the epiphysis, and bone growth proceeds toward the diaphysis  Epiphyseal plate remains between diaphysis and each epiphysis until bone growth in length is complete (Figure 7-10)

32 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 32 Development of Bone Endochondral ossification (cont.) Endochondral ossification (cont.)  Epiphyseal plate is composed of four layers (Figure 7-9): “Resting” cartilage cells—point of attachment joining the epiphysis to the shaft “Resting” cartilage cells—point of attachment joining the epiphysis to the shaft Zone of proliferation—cartilage cells undergoing active mitosis, causing the layer to thicken and the plate to increase in length Zone of proliferation—cartilage cells undergoing active mitosis, causing the layer to thicken and the plate to increase in length Zone of hypertrophy—older, enlarged cells undergoing degenerative changes associated with calcium deposition Zone of hypertrophy—older, enlarged cells undergoing degenerative changes associated with calcium deposition Zone of calcification—dead or dying cartilage cells undergoing rapid calcification Zone of calcification—dead or dying cartilage cells undergoing rapid calcification

33 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 33 Bone Growth and Resorption (Figures 7-11 and 7-12) Bones grow in diameter by the combined action of osteoclasts and osteoblasts Bones grow in diameter by the combined action of osteoclasts and osteoblasts Osteoclasts enlarge the diameter of the medullary cavity Osteoclasts enlarge the diameter of the medullary cavity Osteoblasts from the periosteum build new bone around the outside of the bone Osteoblasts from the periosteum build new bone around the outside of the bone

34 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 34 Repair of Bone Fractures Fracture—break in the continuity of a bone Fracture—break in the continuity of a bone Fracture healing (Figure 7-13) Fracture healing (Figure 7-13)  Fracture tears and destroys blood vessels that carry nutrients to osteocytes  Vascular damage initiates repair sequence  Callus—specialized repair tissue that binds the broken ends of the fracture together  Fracture hematoma—blood clot occurring immediately after the fracture, is then reabsorbed and replaced by callus

35 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 35Cartilage Characteristics Characteristics  Avascular connective tissue  Fibers of cartilage are embedded in a firm gel  Has the flexibility of firm plastic  No canal system or blood vessels  Chondrocytes receive oxygen and nutrients by diffusion  Perichondrium—fibrous covering of the cartilage  Cartilage types differ because of the amount of matrix present and the amounts of elastic and collagenous fibers

36 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 36Cartilage Types of cartilage (Figure 7-14) Types of cartilage (Figure 7-14)  Hyaline cartilage Most common type Most common type Covers the articular surfaces of bones Covers the articular surfaces of bones Forms the costal cartilages, cartilage rings in the trachea, bronchi of the lungs, and the tip of the nose Forms the costal cartilages, cartilage rings in the trachea, bronchi of the lungs, and the tip of the nose Forms from specialized cells in centers of chondrification, which secrete matrix material Forms from specialized cells in centers of chondrification, which secrete matrix material Chondrocytes are isolated into lacunae Chondrocytes are isolated into lacunae

37 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 37 Cartilage Types of cartilage (cont.) Types of cartilage (cont.)  Elastic cartilage Forms external ear, epiglottis, and eustachian tubes Forms external ear, epiglottis, and eustachian tubes Large number of elastic fibers confers elasticity and resiliency Large number of elastic fibers confers elasticity and resiliency  Fibrocartilage Occurs in symphysis pubis and intervertebral disks Occurs in symphysis pubis and intervertebral disks Small quantities of matrix and abundant fibrous elements Small quantities of matrix and abundant fibrous elements Strong and rigid Strong and rigid

38 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 38 Cartilage Histophysiology of cartilage Histophysiology of cartilage  Gristle-like nature permits cartilage to sustain great weight or serve as a shock absorber  Strong yet pliable support structure  Permits growth in length of long bones

39 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 39 Cartilage Growth of cartilage Growth of cartilage  Interstitial or endogenous growth Cartilage cells divide and secrete additional matrix Cartilage cells divide and secrete additional matrix Seen during childhood and early adolescence while cartilage is still soft and capable of expansion from within Seen during childhood and early adolescence while cartilage is still soft and capable of expansion from within

40 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 40 Cartilage Growth of cartilage (cont.) Growth of cartilage (cont.)  Appositional or exogenous growth Chondrocytes in the deep layer of the perichondrium divide and secrete matrix Chondrocytes in the deep layer of the perichondrium divide and secrete matrix New matrix is deposited on the surface, increasing its size New matrix is deposited on the surface, increasing its size Unusual in early childhood but, once initiated, continues throughout life Unusual in early childhood but, once initiated, continues throughout life

41 Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 41 Cycle of Life: Skeletal Tissues Skeleton fully ossified by mid-twenties Skeleton fully ossified by mid-twenties  Soft tissue may continue to grow—ossifies more slowly Adults—changes occur from specific conditions Adults—changes occur from specific conditions  Increased density and strength from exercise  Decreased density and strength from pregnancy, nutritional deficiencies, and illness Advanced adulthood—apparent degeneration Advanced adulthood—apparent degeneration  Hard bone matrix replaced by softer connective tissue  Exercise can counteract degeneration


Download ppt "Mosby items and derived items © 2007, 2003 by Mosby, Inc.Slide 1 Chapter 7 Skeletal Tissues."

Similar presentations


Ads by Google