Download presentation
Presentation is loading. Please wait.
Published byRichard Owens Modified over 9 years ago
1
Simulación de la calidad del aire en la isla de Gran Canaria mediante el método de los elementos finitos y su validación con datos experimentales A. Oliver, R. Montenegro, A. Perez-Foguet, E. Rodríguez, J.M. Escobar, G. Montero Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya - Barcelonatech Instituto Universitario SIANI Ingeniería Computacional Universidad de Las Palmas de Gran Canaria
2
Motivation Validation of the framework proposed by the authors (Oliver et al. 2013, Energy) Gran Canaria island (Canary Islands) CMN 2013 · Bilbao · 25-28 June · 2
3
Motivation One emission stack (Electric power plant) 4 imission stations 3 consecutive days of emission and imission data CMN 2013 · Bilbao · 25-28 June · 3
4
Algorithm Adaptive Finite Element Model Construction of a tetrahedral mesh Mesh adapted to the terrain using Meccano method Wind field modeling Horizontal and vertical interpolation from HARMONIE data Mass consistent computation Calibration Pollutant dispersion modeling Wind field plume rise perturbation Transport and reaction pollutant simulation Calibration CMN 2013 · Bilbao · 25-28 June · 4
5
Mesh creation CMN 2013 · Bilbao · 25-28 June · 5 Meccano Method
6
Mesh creation CMN 2013 · Bilbao · 25-28 June · 6 Meccano Method
7
Mesh creation CMN 2013 · Bilbao · 25-28 June · 7 Meccano Method
8
Mesh creation CMN 2013 · Bilbao · 25-28 June · 8 Gran Canaria Mesh
9
Mesh creation CMN 2013 · Bilbao · 25-28 June · 9 Gran Canaria Mesh
10
Mesh creation CMN 2013 · Bilbao · 25-28 June · 10 Gran Canaria Mesh
11
Wind field modeling Experimental data from 1 station (10 m over terrain) Use Harmonie model Harmonie is a non-hidrostatic model U 10 and V 10 data from Harmonie has been used as measure stations data Geostrophic wind from Harmonie CMN 2013 · Bilbao · 25-28 June · 11
12
Wind field modeling Horizontal interpolation Weighting inverse to the squared distance and inverse height differences CMN 2013 · Bilbao · 25-28 June · 12
13
Wind field modeling Vertical interpolation Log-linear wind profile CMN 2013 · Bilbao · 25-28 June · 13 Gesostrophic wind Mixing layer
14
Wind field modeling Mass-consistent model Lagrange multiplier CMN 2013 · Bilbao · 25-28 June · 14
15
Wind field modeling Calibration ε (Horizontal interpolation weight) Tv Th (Mass consistent factors) Genetic algorithms G. Montero, E. Rodriguez, R. Montenegro, J.M. Escobar, J.M. Gonzalez-Yuste, Genetic algorithms for na improved parameter estimation with local refinement of tetrahedral meshes in a wind model, Advances in Engineering Software, Volume 36, Issue 1, January 2005, Pages 3-10, ISSN 0965-9978, [DOI:10.1016/j.advengsoft.2004.03.011] CMN 2013 · Bilbao · 25-28 June · 15
16
Wind field modeling CMN 2013 · Bilbao · 25-28 June · 16 20 m
17
Plume rise modeling CMN 2013 · Bilbao · 25-28 June · 17 Briggs formula Buoyant (wc < 4Vo) Driving-force: gas temperature difference Curved trajectory Momentum (wc > 4Vo) Driving-force: Gas velocity Vertical straight trajectory
18
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 18 Stack outflow Inlet wind boundaries Outlet wind boundaries Initial condition
19
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 19 RIVAD reactive model (4 species)
20
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 20 Splitting ( Strang Splitting) Rosembrock 2 J = Jacobian s(c)
21
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 21 Temporal discretization: Cranck-Nicolson Spatial discretization: Least Squares FEM System solver: Conjugate gradient preconditioned with an Incomplete Cholesky Factorization Matrix storage: sparse MCS
22
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 22 Concentration after 1000 seconds
23
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 23 Concentration after 1000 seconds
24
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 24
25
Air quality modeling CMN 2013 · Bilbao · 25-28 June · 25 Calibration Diffusion (K) Time step (artificial diffusion) Concentration SO2 at station 1 Measured data at station 1: 6.35 μg
26
Conclusions and future work CMN 2013 · Bilbao · 25-28 June · 26 Suitable approach for modeling air transport and reaction over complex terrains A. Oliver, G. Montero, R. Montenegro, E. Rodríguez, J.M. Escobar, A. Pérez-Foguet, Adaptive finite element simulation of stack pollutant emissions over complex terrains, Energy, Volume 49, 1 January 2013, Pages 47-60, ISSN 0360-5442, http://dx.doi.org/10.1016/j.energy.2012.10.051. Genetic algorithms useful for wind field calibration Automatic calibration of diffusion and artificial diffusion for the transport and reaction of pollutants
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.