Download presentation
Presentation is loading. Please wait.
Published bySharon Summers Modified over 9 years ago
1
Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin
2
Christian Thomsen Topics Nanoribbon vibrations Graphene under uniaxial strain Graphene nanoribbons under uniaxial strain TERS: individual NTs and small bundles
3
Christian Thomsen Topics Nanoribbon vibrations Graphene under uniaxial strain Graphene nanoribbons under uniaxial strain TERS: individual NTs and small bundles
4
Christian Thomsen Graphite Graphene Nanoribbon strip of graphene „quasi 1D-crystal“ periodic in 1 direction 2D-crystal single graphite plane periodic in x-y-plane 3D-crystal sp2-hybridization stacked planes What are nanoribbons?
5
Christian Thomsen Potential for applications high mobility easy to prepare band-gap engineering
6
Christian Thomsen Classification Zigzag Armchair width (number of dimers) edge type („chiral” NR not considered here) N-AGNRN-ZGNR
7
Christian Thomsen Wave propagation : continuous : quantized
8
Christian Thomsen Brillouin zone Brillouin zone of nanoribbons: N discrete lines (N: number of dimers) 6 modes for each line here: 10-AGNR and 10-ZGNR
9
Christian Thomsen Electronic properties: Armchair NRs => three families of AGNRs, N=3p, N=3p+1, N=3p+2 Son, Cohen, Louie PRL 97, 216803 (2006)
10
Christian Thomsen Electronic properties: Zigzag NRs band gap opens for anti-ferromagnetic ground state metallic if spin is not considered Son, Cohen, Louie Nature 444, 347 (2006)
11
Christian Thomsen Calculational details Siesta: www.uam.es/siesta Kohn-Sham self consistent density functional method norm-conserving pseudopotentials strictly confined atom centered numerical atomic orbitals (NAO) as basis functions phonon calculation: finite differences to obtain force constant matrix
12
Christian Thomsen Fundamental modes & “overtones” Interpretation as fundamental modes and overtones Nanoribbons have 3N modes E 2g corresponds to 0-LO and 0-TO A wavelength and a wavevector k perp can be assigned to overtones here: 7-AGNR ||
13
Christian Thomsen Width dependence (armchair) E2g
14
Christian Thomsen LO Softening (armchair) family dependence also in phonon spectrum strong softening of the LO phonon in 3p+2 ribbons
15
Christian Thomsen Mapping of the overtones graphene phonon dispersion: AGNR KM ZGNR M Mohr, CT et al., PRB 76, 035439 (2007) Mohr, CT et al., PRB 80, 155418 (2009) Grüneis, et al. PRB 65,155405 (2002)
16
Christian Thomsen Mapping of the overtones Mapping of a 15-AGNR and a 8-ZGNR onto the graphene dispersion Mohr, CT et al., PRB 76, 035439 (2007) Mohr, CT et al., PRB 80, 155418 (2009) Grüneis, et al. PRB 65,155405 (2002)
17
Christian Thomsen Graphite dispersion Double resonance: Grüneis, et al., PRB 65, 155405 (2002) Reich and CT, Phil. Trans. 362, 2271 (2004) Inelastic x-ray scattering: Maultzsch, CT, et al., PRL 92, 075501 (2004) Mohr, CT et al., PRB 76, 035439 (2007) unfolding nanoribbons: Gillen, CT et al., PRB 80, 155418 (2009) Gillen et al., PRB in print (2010)
18
Christian Thomsen Phonon dispersion Odd N: modes pairwise degenerate at X-point (zone-folding) 4 th acoustic mode („1-ZA“) (rotational mode) Even N: modes pairwise degenerate at X-point 4 th acoustic mode („1-ZA“) compare: Yamada et al, PRB, 77, 054302 (2008))
19
Christian Thomsen Topics Nanoribbon vibrations Graphene under uniaxial strain Graphene nanoribbons under uniaxial strain TERS: individual NTs and small bundles
20
Christian Thomsen Mohiuddin, Ferrari et al,. PRB 79, 205433 (2009) Huang, Heinz et al., PNAS 106, 7304 (2009) Uniaxial strain in graphene Polarized measurements reveal orientation of graphene sample
21
Christian Thomsen Calculational details www.quantum-espresso.org Kohn-Sham selfconsistent density functional method norm-conserving pseudopotentials plane-wave basis phonon calculation: linear response theory / DFBT(Density Functional Perturbation Theory)
22
Christian Thomsen Method
23
Christian Thomsen Electronic band structure under strain
24
Christian Thomsen Dirac cone at K-point strains shift the Dirac cone but don’t open a gap
25
Christian Thomsen Phonon band structure under strain
26
Christian Thomsen Raman spectrum of graphene
27
Christian Thomsen Shift of the E 2g -mode shift rate independent of strain direction
28
Christian Thomsen Shift of the E 2g -mode
29
Christian Thomsen Ni et al., ACS Nano 2, 2301 (2008) Mohiuddin, Ferrari et al. PRB 79, 205433 (2009) Huang, Heinz et al., PNAS 106, 7304 (2009) Comparison with experiments excellent agreement with Mohiuddin/Ferrari Mohr, CT, et al., Phys. Rev. B 80, 205410 (2009)
30
Christian Thomsen D and 2D mode: Double resonance The particular band structure of CNTs allows an incoming resonance at any energy. The phonon scatters the electron resonantly to the other band. A defect scatters the electron elastically back to where it can recombine with the hole. q phonon varies strongly with incident photon energy. CT and Reich, Phys. Rev. Lett. 85, 5214 (2000)
31
Christian Thomsen Double resonance: inner and outer defect- induced D-mode
32
Christian Thomsen Strained w/ diff. polarizations
33
Christian Thomsen Topics Nanoribbon vibrations Graphene under uniaxial strain Graphene nanoribbons under uniaxial strain TERS: individual NTs and small bundles
34
Christian Thomsen NR-Band gap under strain band gap for N=13, 14, 15 AGNRs linear dependence for small strains
35
Christian Thomsen G + and G - modes as fct. of strain N=7
36
Christian Thomsen G - for different NR widths approaching the dependence of graphene
37
Christian Thomsen approaching the dependence of graphene G + for different NR widths
38
Christian Thomsen Topics Nanoribbon vibrations Graphene under uniaxial strain Graphene nanoribbons under uniaxial strain TERS: individual NTs and small bundles
39
Christian Thomsen Tip-enhanced Raman spectra find specific nanotubes, previously identified with AFM observe the RBM as a function of position along the nanotube study frequency shifts as a function of sample- tip distance Hartschuh et al., PRL (2003) and Pettinger et al., PRL (2004) N.Peica, CT, J. Maultzsch, JRS, submitted (2010) N. Peica, CT et al., pss (2009)
40
Christian Thomsen TERS setup Laser wavelength 532 nm
41
Christian Thomsen Tip-enhanced Raman spectra small bundles of individual nanotubes on a silicon wafer
42
Christian Thomsen Tip-enhanced Raman spectra small bundles of individual nanotubes on a silicon wafer
43
Christian Thomsen Chirality: Raman spectra The Raman spectrum is divided into radial breathing mode defect-induced mode high-energy mode
44
Christian Thomsen Tip-enhanced Raman spectra small bundles of individual nanotubes on a silicon wafer N.Peica, CT, J. Maultzsch, Carbon, submitted (2010)
45
Christian Thomsen Sample-tip distance dependence enhancement factors between 2 10 3 and 4 10 4
46
Christian Thomsen RBM spectra RBM can be observed even if not visible in the far-field spectrum identified (17,6), (12,8), (16,0), and (12,5) semiconducting NTs from experimental Kataura plots Popov et al. PRB 72, 035436 (2005)
47
Christian Thomsen Frequency shifts in TERS shifts of 5 cm -1 observed
48
Christian Thomsen Frequency shifts in TERS possible explanation of the small shifts are in terms of the double-resonance Raman process of the D and 2D modes (CT, PRL 2000) deformation through the tip approach sensitive reaction of the electronic band structure
49
Christian Thomsen Conclusions Vibrations of graphene nanoribbons mapping of overtones on graphene (graphite) dispersion Uniaxial strain in graphene comparison to experiments TERS specta of individual NTs large enhancement factors NTs identified possible observation of small frequency shifts
50
Christian Thomsen Acknowledgments Janina Maultzsch Technische Universität Berlin Nils Rosenkranz Technische Universität Berlin Marcel Mohr Technische Universität Berlin Niculina Peica Technische Universität Berlin
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.