Download presentation
Presentation is loading. Please wait.
Published byBelinda Lee Modified over 9 years ago
1
CIS 720 Mutual Exclusion
2
Critical Section problem Process i do (true) entry protocol; critical section; exit protocol; non-critical section od
3
Correctness Mutual exclusion: at most one process at a time is executing its critical section Absence of deadlock: If two or more processes are trying to enter their critical section, at least one will succeed Absence of unnecessary delay: If a process is trying to enter its critical section and the other processes are executing their non-critical sections or have terminated then the first process is not prevented from entering its critical section. Eventual entry: A process that is attempting to enter its critical section will eventually succeed.
4
Invariant based approach CS1CS2 do (true) entry protocol; in1 = truein2 = true critical section critical section exit protocol; in1 = falsein2 = false non-critical sectionnon-critical section od
5
Invariant based approach CS1CS2 do (true) critical section critical section lock = falselock = false non-critical sectionnon-critical section od
6
Test and set instruction CS1CS2 do (true) while (TS(lock)) skip;while(TS(lock)); critical section critical section lock = falselock = false non-critical sectionnon-critical section od
7
Implementing await statements CSenter while (!B) { CSexit; CSenter } S; CSexit
8
Tie Breaker Algorithm in1 = false; in2 = false; last = 1 co CS1: CS2: do true int = true; last = 1; in2 = true; last = 2; while(in2 /\ last == 1); while(in1 /\ last == 2); critical section critical section in1 = false; in2 = false; non-critical section non-critical section od od oc
9
Tie Breaker Algorithm in1 = false; in2 = false; last = 1 co CS1: CS2: do true last = 1; in1 = true; last = 2; in2 = true ; ; critical section critical section in1 = false; in2 = false; non-critical section non-critical section od od oc
10
Ticket Algorithm next = 1; number = 1; turn[1..n]= [0…0]; co CSi: do true await( turn[i] ) == next critical section non-critical section od oc Invariant: next > 0 and for all i, cs[i] in CS turn[i] == next /\ turn[i] != turn[j] for all j
11
Bakery algorithm turn1 = 0; turn2 = 0; co CS1: CS2: do true do true turn1 = turn2 + 1; turn2 = turn1 + 1 while(turn2 != 0 /\ turn1 > turn2); while(turn1 != 0 and /\ turn2 > turn1); critical section turn1 = 0; turn2 = 0; non-critical section od od oc
12
Bakery algorithm turn1 = 0; turn2 = 0; co CS1: CS2: do true do true turn = 1; turn2 = 1 turn1 = turn2 + 1; turn2 = turn1 + 1 while(turn2 != 0 /\ while(turn1 != 0 and /\ (turn1,1) > (turn2,2)); (turn2,2) > (turn1,1)); critical section turn1 = 0; turn2 = 0; non-critical section od od oc
13
Barrier synchronization Worker[i]: do true code for task i wait for all tasks to complete od
14
Barrier synchronization Worker[i]: do true code for task i od
15
Barrier synchronization Worker[i]: do true code for task i od
16
Barrier synchronization co worker[i]: Coordinator do true do true code for task I; for (i = 1 to n) arrive[i] = 1 await(arrive[i]= 1); await(continue ==1) continue = 1 od od oc
17
Barrier synchronization co worker[i]: Coordinator do true do true code for task I; for (i = 1 to n) arrive[i] = 1 { await(arrive[i]= 1); await(continue[i]==1) arrive[i] = 0; } continue[i] = 0; for (i = 1 to n) continue[i] = 1 od od oc Flag rule: A process that waits for the synchronization flags should reset it.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.