Download presentation
1
6 Sexual Development
2
Fertilization Is the Fusion of One Sperm with One Ovum
Fertilization, or conception, occurs when a single sperm enters a single ovum to produce a zygote Prior to fertilization, sperm must undergo capacitation and the acrosome reaction After the sperm fuses with the plasma membrane, a chemical reaction blocks the entry of other sperm, and the ovum completes its second meiotic division
3
Figure 6.3 Fertilization and production of the conceptus
HS4e-Fig R.jpg
4
Fertilization Is the Fusion of One Sperm with One Ovum
A conceptus is the entire collection of cells derived from the fertilized ovum from the 2-cell stage onward By the 32-cell stage, the conceptus is called a blastocyst—it develops a fluid-filled cavity and implants itself in the wall of the uterus The inner cell mass becomes the embryo and the outer layer of cells forms part of the placenta Around 6 days after fertilization, the blastocyst secretes the hormone human chorionic gonadotropin (hCG), which signals mother’s body that implantation has occurred
5
Figure 6.4 Development of the human conceptus
HS4e-Fig jpg
6
Figure 6.5 Blastocyst in the process of implanting itself
HS4e-Fig jpg
7
During Embryonic Life the Body Plan and Organ Systems Develop
By 2 weeks after fertilization, the embryo consists of three layers of cells: ectoderm, mesoderm, and endoderm During the embryonic phase of (2–6 weeks postconception) all major organ systems have begun to develop After this point, the embryo is referred to as a fetus; subsequent fetal development involves growth and the functional maturation of body systems
8
Figure 6.6 Stages of prenatal development
HS4e-Fig jpg
9
Genetic Sex Is Determined at Fertilization
Our understanding of sex differentiation is based upon studies with rabbits conducted by the French embryologist Alfred Jost
10
Figure 6.7 Alfred Jost’s experiments on rabbits
HS4e-Fig jpg
11
Genetic Sex Is Determined at Fertilization
Six week old embryos possess undifferentiated structures called “genital ridges” that will develop into either testes or ovaries Male development depends upon the presence of the SRY gene, which causes the fetus to develop testes, which secrete testosterone and anti- Müllerian hormone (AMH) Female development (with the exception of ovaries) proceeds in the absence of specific genetic instructions, although several genes are involved in both stimulating ovarian development and inhibiting testis development
12
Figure 6.8 The genetic basis of sex determination
HS4e-Fig jpg
13
Figure 6.9 Sex determination
HS4e-Fig jpg
14
Sexual Development Involves Growth or Breakdown of Precursor Structures
At 6 weeks postconception, both male and female embryos possess two sets of ducts that run from each gonad to the future site of the external genitalia In male fetuses, testosterone stimulates the Wolffian ducts to develop into the epididymis, vas deferens, ejaculatory ducts, and seminal vesicles, and AMH causes the Müllerian to regress and disappear In female fetuses, in the absence of AMH, the Müllerian ducts develop into the oviducts, uterus, and the deeper part of the vagina, while the Wolffian ducts regress and disappear in the absence of testosterone
15
Figure 6.11 Development of the male and female reproductive tracts
HS4e-Fig R.jpg
16
Sexual Development Involves Growth or Breakdown of Precursor Structures
At this time, the external genitals of male and female embryos are identical and consist of the genital tubercle (forms glans of penis or clitoris), urethral folds (forms shaft of penis or labia minora), and urethral swellings (forms scrotum or labia majora) In male fetuses, testosterone must be converted to 5-dihydrotestosterone (DHT) for masculinization of the external genitalia to occur In female fetuses, feminization of genitals occurs in the absence of hormonal signals
17
Figure 6.12 Development of the male and female external genitalia (Part 1)
HS4e-Fig R.jpg
18
Figure 6.12 Development of the male and female external genitalia (Part 2)
HS4e-Fig R.jpg
19
Figure 6.12 Development of the male and female external genitalia (Part 3)
HS4e-Fig R.jpg
20
Several Types of Atypical Sex Development Exist in Humans
Chromosomal anomalies can occur when there are fewer or more than two sex chromosomes Turner syndrome (XO) individuals are phenotypic females who do not enter puberty and are infertile Klinefelter syndrome (XXY) individuals are phenotypic males who are generally tall with somewhat feminized secondary sex characteristics and low testosterone levels
21
Box 6.1 Biology of Sex: Atypical Development: Chromosomal Anomalies
HS4e-Box jpg
22
Several Types of Atypical Sex Development Exist in Humans
Gonadal intersexuals, historically called true hermaphrodites, possess both ovarian and testicular tissue
23
Box 6.2 Biology of Sex: Atypical Development: Gonadal Intersexuality
HS4e-Box jpg
24
Several Types of Atypical Sex Development Exist in Humans
In androgen insensitivity syndrome (AIS), genetic males who are unresponsive to androgens develop as phenotypic females but with no internal reproductive structures
25
Box 6.3 Biology of Sex: Atypical Development: Androgen Insensitivity Syndrome
HS4e-Box jpg
26
Several Types of Atypical Sex Development Exist in Humans
Congenital adrenal hyperplasia (CAH) leads to increased androgen production by the adrenal gland Genetic females with CAH may have masculinized genitals (e.g., elongated clitoris, fused labia)
27
Box 6.4 Biology of Sex: Atypical Development: Congenital Adrenal Hyperplasia
HS4e-Box jpg
28
Several Types of Atypical Sex Development Exist in Humans
Individuals with 5-reductase deficiency cannot convert testosterone to DHT Genetic males have genitals that are not fully masculinized at birth
29
Box 6.5 Biology of Sex: Atypical Development: 5α-Reductase Deficiency
HS4e-Box jpg
30
Several Types of Atypical Sex Development Exist in Humans
Males with hypospadias or a micropenis have a misplaced urethral opening or small penis, respectively
31
Box 6.6 Biology of Sex: Atypical Development: Hypospadias and Micropenis
HS4e-Box jpg
32
Hormones Influence Sexual Differentiation of the Central Nervous System
The CNS contains sexually dimorphic structures and cell groups: Onuf’s nucleus innervates motor neurons of the pelvic floor, including the base of the penis It is larger and contains more neurons in men than in women Medial preoptic area of the anterior hypothalamus is associated with male sexual behavior in rodents Within this region in humans, the third interstitial nucleus of the anterior hypothalamus (INAH3) is larger in males than in females
33
Figure 6.14 The third interstitial nucleus of the anterior hypothalamus (INAH3)
HS4e-Fig jpg
34
Hormones Influence Sexual Differentiation of the Central Nervous System
Numerous structural, functional, and chemical differences have been identified throughout the brains of men and women, although the significance of these differences is unclear These differences may arise as a consequence of hormone action during sensitive periods of development
35
Early Hormonal Exposure Influences Later Sexual Behavior
Experiments in rodents reveal both organizational and activational actions of hormones Organizational effects of hormones can affect brain circuitry and generally occur during sensitive periods of development Activational effects occur when the presence of a hormone has a direct effect on a behavior or response Primates exhibit multiple sensitive periods during which hormonal effects can impact subsequent behavior
36
Figure 6.17 Hormones and sexual behavior in rats
HS4e-Fig R.jpg
37
Other Y-Linked Genes Besides SRY Influence Development
Several Y-linked genes are necessary for normal spermatogenesis There is a gene on the Y chromosome that increases stature In mice, some brain and behavioral differences are influenced by genetic mechanisms not involving SRY and testicular hormones
38
External Factors Influence Prenatal Sexual Development
Environmental factors such as maternal stress or exposure to hormones and related chemicals and drugs can affect sexual development Prenatal hormone exposure creates a predisposition that can be modified by social and environmental circumstances, leading to differences in sexual behavior and brain anatomy
39
Puberty Marks Sexual Maturation
Puberty is the biological transition to sexual maturity Pubertal growth spurts both begin and end earlier in girls than in boys, leading to an increase in height as well as changes in skeletal structure and body composition
40
Figure 6.19 Growth velocity curves for boys and girls
HS4e-Fig jpg
41
Puberty Marks Sexual Maturation
Puberty is initiated by the pulsatile secretion of GnRH, which stimulates gonadotropin and gonadal hormone secretion Body weight or the accumulation of a critical amount of body fat may use hormonal signals to trigger the hypothalamus to initiate pubertal maturation
42
Figure 6.24 Hormonal control of puberty
HS4e-Fig R.jpg
43
Puberty Marks Sexual Maturation
In girls, changes during puberty include breast development, growth of axillary (armpit) and pubic hair, and growth and maturation of the internal reproductive tract and external genitalia The onset of menstruation, or menarche, is a dramatic event in female pubertal development and has been starting at progressively younger ages in Western countries
44
Figure 6.21 Typical development of breasts in girls at puberty
HS4e-Fig jpg
45
Figure 6.22 Puberty is starting earlier
HS4e-Fig jpg
46
Puberty Marks Sexual Maturation
In boys, growth of the penis and growth of pubic, body, and axillary hair, as well as deepening of the voice usually follow enlargement of the testes Ejaculation may occur following masturbation or during sleep (nocturnal emissions)
47
Figure 6.23 Typical development of male external genitalia at puberty
HS4e-Fig jpg
48
Intersexuality Raises Complex Social and Ethical Issues
Intersex conditions may affect an individuals psychological well-being as well as anatomy and sexual function The Accord Alliance is an organization devoted to promoting the medical and psychological health of people with intersexed conditions, in part by increasing social awareness, understanding, and acceptance of people with these conditions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.