Download presentation
Presentation is loading. Please wait.
Published byJudith Simmons Modified over 9 years ago
1
School of something FACULTY OF OTHER DTC Low Carbon Technologies Faculty Of Engineering University of Leeds, UK Holly Edwards Rail Revolution or Carbon Creator? Assessing the potential for high speed rail to replace domestic flights worldwide
2
Introduction New transport modes have increasingly opened the door for regional development
3
Why High Speed Rail? Reduction in carbon emissions Alternative technological solution for the aviation industry Energy security
4
Where in the World? Operational High Speed Rail Planned/In Construction Under Consideration
5
Air-Rail Partnerships First air-rail partnership introduced in France in 1994 High speed rail services provide the same service as that of a flight e.g. check-in at origin station including bag transfer and quick and efficient connections to onward flights. Benefits to: Airlines: additional capacity at airports by freeing of slots and improved network economics High Speed Rail Operators: increase in demand for services Airports: increased connectivity, reduced local pollution and increased catchment area.
6
Methodology Rio de Janeiro- Sao Paulo Air: 2 hr 0 m HSR: 1 hr 25 m Shanghai- Beijing Air: 5 hr 0 m HSR: 4 hr 38 m Barcelona- Madrid Air: 2 hr 30 m HSR: 2 hr 36 m Johannesburg -Cape Town Air: 3 hr HSR: 4 hr 30 m Mumbai-New Delhi Air: 3 hr 6 m HSR: 4 hr 6 m Los Angeles- San Francisco Air: 2 hr 19 m HSR: 2 hr 48 m Tokyo- Sapporo Air: 2 hr 30 m HSR: 5 hr 0 m Sydney- Melbourne Air: 2 hr 35 m HSR: 3 hr 8 m OperationalNo formal plans Construction/Planning
7
Methodology Total Carbon Calculation for Air Travel: Where: E air = total amount of CO 2 emissions (kg) between a city pair in one year; N flights = total number of services between a city pair in one year; F CCD = Fuel use (kg) for climb/cruise/descent stage of flight for given aircraft type; F LTO = Fuel use (kg) for landing and take-off cycle of flight for given aircraft type; EF = emissions factor for carbon dioxide of 3.157 kgCO 2 /kgfuel
8
Methodology Total Carbon Calculation for High Speed Rail: Where: E HSR = total emissions for HSR; EC = energy consumption (kWh) per seat-km; LF = load factor (%); S = number of seats required by passengers shifting from air travel; CI = carbon intensity of electricity grid (kgCO 2 /kWh); d = distance (km); N flights = number of flights per annum that HSR would be replacing.
9
Results – Carbon Emissions
10
Results – Grid Parity
11
High Speed Rail Decision Factors HSR Carbon savings Energy security Carbon from construction Competitive journey times Integration of air- rail partnerships
12
Conclusion Air-rail partnerships can result in significant reductions in carbon emissions. Savings strongly depend on the carbon intensity of the grid of the country operating the HSR route There may also be other reasons to implement partnerships for airlines, such as reducing fuel costs. Including air-rail partnerships in the earliest stages of planning is key to achieving a effective and efficient system.
13
Thank you Holly Edwards pmhae@leeds.ac.uk
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.