Presentation is loading. Please wait.

Presentation is loading. Please wait.

Toshio Koike, CEOP Lead Scientist The University of Tokyo GEO HP: Global Earth Observation System of Systems (GEOSS) and the.

Similar presentations


Presentation on theme: "Toshio Koike, CEOP Lead Scientist The University of Tokyo GEO HP: Global Earth Observation System of Systems (GEOSS) and the."— Presentation transcript:

1 Toshio Koike, CEOP Lead Scientist The University of Tokyo GEO HP: http://earthobservations.org Global Earth Observation System of Systems (GEOSS) and the CEOP High Altitude Observatories

2 U.S. Department of State, Washington DC July 31, 2003 Earth Observation Summit I DECLARATION Affirmed need for: –Comprehensive, coordinated, sustained Global Earth Observations –Capacity-building related to Earth observations –Exchange of observations in a full and open manner –A 10-year Implementation Plan The ad hoc Group on Earth Observations (ad-hoc GEO)

3 Earth Observation Summit II Hotel Okura, Tokyo, Japan April 25, 2004 Framework Document Nine specific areas of socio-economic benefit; Disasters, Health, Energy, Climate, Water, Weather, Ecosystems, Agriculture and Desertification, Biodiversity The Global Earth Observation System of Systems (GEOSS) A 10-Year Implementation Plan; The Implementation Planning Task Team (IPTT)

4 Earth Observation Summit III Palais d’Egmont, Brussels, Belgium February 16, 2005 Summit Resolution Endorsed the GEOSS 10-Year Implementation Plan Noted with appreciation the extensive supporting material in its companion Reference Document Established formally the Group on Earth Observations (GEO) Issued special communiqué relating to support for tsunami and multi-hazard warning systems with the context of the Global Earth Observations System of Systems (GEOSS)

5 The 10-Year Implementation Plan Vision for GEOSS The vision for GEOSS is to realize a future wherein decisions and actions for the benefit of humankind are informed by coordinated, comprehensive and sustained Earth observations and information.

6 The 10-Year Implementation Plan Reference Document The end-to-end nature of data provision, the feedback loop from user requirements, and the role of GEOSS

7 Coordinated Enhanced Observing Period (CEOP) CEOP HP : http://www.ceop.net EOP-1 EOP-2 EOP-3 EOP-4 Data Collection:2001-2004 / 2005-2007: Research an Element of WCRPinitiated by GEWEX

8 60% of the world population

9 COLD WARM

10

11 Reference Site SSW:QuickSCAT, SeaWinds, ASAR, PALSAR, AMSR/AMSRE SST:MODIS,GLI,AMSR,AMSRE H H Tibetan PlateauHimalayas Equator OceanLand Atmos. Profile:: AIRS,AMSU,MHS Atmos. Profile: AIRS Atmos. Column Values(WV, CWC, Rain): AMSR/AMSRE Atmos. Column Values(Precip.): AMSR/AMSRE Precipitation Profile: PR Cloud Properties:MODIS,GLI Radiation:CERES, MODIS, GLI Diurnal Cycle: TRMM, ADEOSII,Terra+Aqua Land Surf. Hydrol. Soil Moist. Snow, Surf. Temp, VWC. AMSR/AMSRE Land Cover: ETM, ASTER, MODIS, GLI Land Surf. Heterogeneity: ETM,ASTER+MODIS,GLI ASAR,PALSAR+AMSR,AMSRE Satellites Atmos. Profile: AIRS

12 Validation of AIRS Water Vapor Product Mixing Ratio (g/kg) Time Series of Corrected AIRS Water Vapor Product Lhasa 600 ~ 500hPaLevel, Daytime, 2004 corrected product In-situ data Comparison of the Errors of Mixing Ratio at Each Level NCEP/NCAR Corrected AIRS AIRS(g/kg) Radio Sonde(g/kg) Validation of Mixing Ratio at 600-500hPa Level, Tibet Reference Site, 2004) daytime nighttime Nomoto et al, 2005

13

14 SW SE W W SW SE Increase of Column Water Vapor mm Nomoto et al, 2005 mm

15 Reference Site SSW:QuickSCAT, SeaWinds, ASAR, PALSAR, AMSR/AMSRE SST:MODIS,GLI,AMSR,AMSRE H H Tibetan PlateauHimalayas Equator OceanLand Atmos. Profile:: AIRS,AMSU,MHS Atmos. Profile: AIRS Atmos. Column Values(WV, CWC, Rain): AMSR/AMSRE Atmos. Column Values(Precip.): AMSR/AMSRE Precipitation Profile: PR Cloud Properties:MODIS,GLI Radiation:CERES, MODIS, GLI Diurnal Cycle: TRMM, ADEOSII,Terra+Aqua Land Surf. Hydrol. Soil Moist. Snow, Surf. Temp, VWC. AMSR/AMSRE Land Cover: ETM, ASTER, MODIS, GLI Land Surf. Heterogeneity: ETM,ASTER+MODIS,GLI ASAR,PALSAR+AMSR,AMSRE Satellites Land Surf. Hydrol. Soil Moist. Snow, Surf. Temp, VWC. AMSR/AMSRE

16 AWS ASSH Location of AWS and ASSH in AMSR experimental fields of the study area (UB:Ulaanbaatar, CY:Choir, MG:Mandalgobi, SA:Study area)

17 Temporal Variation of Spatially Averaged Validation (Koike et al, 2003)

18 average of the absolute errors 5.7% 8.1% West East

19 Seasonal Variation of the Soil Moisture in the Tibetan Plateu

20 Reference Site SSW:QuickSCAT, SeaWinds, ASAR, PALSAR, AMSR/AMSRE SST:MODIS,GLI,AMSR,AMSRE H H Tibetan PlateauHimalayas Equator OceanLand Atmos. Profile:: AIRS,AMSU,MHS Atmos. Profile: AIRS Atmos. Column Values(WV, CWC, Rain): AMSR/AMSRE Atmos. Column Values(Precip.): AMSR/AMSRE Precipitation Profile: PR Cloud Properties:MODIS,GLI Radiation:CERES, MODIS, GLI Diurnal Cycle: TRMM, ADEOSII,Terra+Aqua Land Surf. Hydrol. Soil Moist. Snow, Surf. Temp, VWC. AMSR/AMSRE Land Cover: ETM, ASTER, MODIS, GLI Land Surf. Heterogeneity: ETM,ASTER+MODIS,GLI ASAR,PALSAR+AMSR,AMSRE Satellites

21

22 Atmospheric Heating over the Tibetan Plateau CEOP/CAMP-Tibet IOP in 2004 (Taniguchi et al, 2005)

23 Diurnal Cycle of Atmospheric Heating 2 hourly Change of Atmospheric Temperature CEOP/CAMP-Tibet IOP in 2004 N N S S (Taniguchi et al, 2005)

24 Reference Site SSW:QuickSCAT, SeaWinds, ASAR, PALSAR, AMSR/AMSRE SST:MODIS,GLI,AMSR,AMSRE H H Tibetan PlateauHimalayas Equator OceanLand Atmos. Profile:: AIRS,AMSU,MHS Atmos. Profile: AIRS Atmos. Column Values(WV, CWC, Rain): AMSR/AMSRE Atmos. Column Values(Precip.): AMSR/AMSRE Precipitation Profile: PR Cloud Properties:MODIS,GLI Radiation:CERES, MODIS, GLI Diurnal Cycle: TRMM, ADEOSII,Terra+Aqua Land Surf. Hydrol. Soil Moist. Snow, Surf. Temp, VWC. AMSR/AMSRE Land Cover: ETM, ASTER, MODIS, GLI Land Surf. Heterogeneity: ETM,ASTER+MODIS,GLI ASAR,PALSAR+AMSR,AMSRE Satellites

25 Soil Moisture Soil Moisture Snow Microwave Radiometer Microwave Radiometer Precipitation Surface Emissivity & Temp. Aqua TRMM Land Surface Scheme Snow Physics Model Cloud Physics Model Four Dimensional Data Assimilation Four Dimensional Data Assimilation

26 Game-Tibet Pathmathevan & Koike, 2001 Soil Moisture Surface Temperature Observed Brightness Temperature Assimilated Brightness Temperature

27 Land Surface Scheme Radiative Transfer Model Cost Function Minimization Scheme TMI/AMSR-E Land Data Assimilation System Atmospheric Forcing Data Reference Site Data

28 NWP Centers Prediction, Re-analysis Regional Model Land Surface Scheme Radiative Transfer Model Cost Function Minimization Scheme TMI/AMSR-E Land-Atmosphere Data Assimilation System Land Data Assimilation System Satellite Regional Products

29 L-A DASOnly Regional Model (Boussetta et al, 2005)

30

31 Diurnal Intra-seasonal Seasonal Watershed Hydrology Study Down Scaling SCIENTIFIC ACTIVITIES OF CEOP PHASE2 WATER & ENERGY SIMULATION & PREDICTION (WESP) Water and Energy Budget Studies Global Land Data Assimilation Systems Inter-CSE Transferability Study Semi-arid Region Study Cold Region Study CEOP INTER-MONSOON STUDY (CIMS) Coordinated Model Integration Process Monsoon System Inter Comparison Aerosol - Monsoon Water Cycle Interaction CEOP Analyses Intercomparison Project Extreme Events Impact Analysis Project Water Resources Study MODEL OUTPUTREFERENCE SITES REFERENCE BASINS SATELLITES DATA INTEGRATION & DISSEMINATION Global Regional Local 2005-2006: Completion of Phase1 Preparation for New Activities 2007-2010: Implementation of New Activities


Download ppt "Toshio Koike, CEOP Lead Scientist The University of Tokyo GEO HP: Global Earth Observation System of Systems (GEOSS) and the."

Similar presentations


Ads by Google