Download presentation
Presentation is loading. Please wait.
Published byBarnaby Newman Modified over 9 years ago
1
S AY A NYTHING Selma P. and Parth P.
2
S AY W HAT ? Data-driven system that allows for interactive storytelling Human author takes turns with computer author
3
E XAMPLE H: You’ll never believe what happened last night. C: Leigh laughed at my joke but I couldn’t help but think ‘liz would have laughed harder.’ H: The joke wasn’t very funny in a ‘ha ha’ kind of way C: “It wasn’t anything like that, I thought he was going to give me a good night kiss but he ended up licking my cheek,” she declared. H: It made me sneeze and snort out loud. C: And now my nose hurts form the snorting.
4
E XAMPLE H: You’ll never believe what happened last night. C: Leigh laughed at my joke but I couldn’t help but think ‘liz would have laughed harder.’ H: The joke wasn’t very funny in a ‘ha ha’ kind of way C: “It wasn’t anything like that, I thought he was going to give me a good night kiss but he ended up licking my cheek,” she declared. H: It made me sneeze and snort out loud. C: And now my nose hurts form the snorting.
5
E XAMPLE H: You’ll never believe what happened last night. C: Leigh laughed at my joke but I couldn’t help but think ‘liz would have laughed harder.’ H: The joke wasn’t very funny in a ‘ha ha’ kind of way C: “It wasn’t anything like that, I thought he was going to give me a good night kiss but he ended up licking my cheek,” she declared. H: It made me sneeze and snort out loud. C: And now my nose hurts form the snorting.
6
W HY DO THIS ? Intriguing Blends structure with creativity Void Game of sorts Fits in the space between language games and more graphically oriented video games Foundational – work in progress Research
7
N ARRATIVE M ODELS (M AJEWSKI 2003) Five ways: Linear String of pearls Branching Amusement park Building blocks
8
W HAT ’ S BEEN DONE BEFORE ? Façade http://interactivestoriesonline.com/ http://www.interactivenarratives.org/ Top – Down Approach Strict domains Technical/ non-inclusive
9
H OW IT WORKS 1. User enters sentence 2. User’s sentence is used to search corpus using term frequency - inverse document frequency (tf- idf) algorithm 3. Highest scored match is retrieved. Sentence after best match is outputted by computer 4. Repeat
10
H OW DID THEY DO IT ?
11
G ETTING D ATA ( DB ) Considered Manual (StoryCorps/ Fed. Writers) Well curated biased Favored blog posts (3.4 million) 1.06 billion words Extraction Only 17% textual material on weblogs is narrational 3.7 million story segments 66.5 million sentences Favored Recall over Precision FN preferred over FP
12
G ETTING D ATA Spinn3r.com – 44 million weblog. Sampled / hand annotated 5,270 blogs. Annotated validations set
13
G ETTING D ATA Randomized training/ testing Supervised machine learning Binary classification problem Confidence Weighted Linear Classifier [Dredze 2008]
14
G ETTING D ATA Rando. Data Set annotation training/ testing F(x)F(x) Sampling
15
C ORPUS ( DB ) C REATION Crawled blogs and applied algorithm: (2012): Post- Processing Parse trees Verb tenses First personal pronouns
16
C ORPUS ( DB ) C REATION Rando. Data Set crawl blogs annotation training/ testing F(x)F(x) Sampling Blog data F(x)F(x) Story data
17
A PPLICATION Querying Corpus ( ) Optimized: Return a list of stories that contain any matching words with user input Use TF-IDF ! Story data
18
A PPLICATION Rando. Data Set crawl blogs annotation training/ testing F(x)F(x) Sampling Blog data F(x)F(x) Story data “User Input” Query Story data Match Algorithm (tf – id) “Computer Output”
19
T ERM FREQUENCY – INVERSE DOCUMENT FREQUENCY ( TF - IDF ) TF-IDF is a numerical statistic that reflects how important a word is to a document in a corpus The term frequency measures how often a word appears in a document The inverse document frequency is a measure of how common a word is within the corpus as a whole. It tells us how much information a word provides.
20
T ERM FREQUENCY – INVERSE DOCUMENT F REQUENCY ( TF - IDF ) Image credit: Li(2011)
21
R ESULTS
22
A REAS TO I MPROVE Metrics? Entertainment Coherence
23
A REAS TO I MPROVE Metrics? Entertainment Coherence Believability / Usability Compare how well with next sentence user would have written
24
A REAS TO I MPROVE Fail to use all preceding sentences. Only returns highest ranked search.
25
A REAS TO I MPROVE Fail to use all preceding sentences. Only returns highest ranked search.
26
A REAS TO I MPROVE Fail to use all preceding sentences. Only returns highest ranked search.
27
F UTURE WORK No narrative plot
28
W ORK IN P ROGRESS Foundational Last article was 2012
29
T HANKS
30
D ISCUSSION Q’ S
31
I MPROVEMENTS ?
32
Q UALITY A SSESSMENT
33
M ODIFY C ORPUS
34
P APER C ONTENT ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.