Download presentation
Presentation is loading. Please wait.
Published byBrittney Patrick Modified over 9 years ago
1
X5 TEST BEAM preliminary studies Outline Voltage scan PLL scan + Neighbour Strips Sensor Uniformity Comments Special Trigger (Friday)
2
D. Giordano - Università & INFN di Bari2 Opto-Hybrid Normalization Run 30029 Signal and Noise for each APV are Normalized to a same value of OH gain normalization with Tick Mark difference (Dig1 – Dig0) S and N values normalized to Tick Mark Difference = 230 Riccardo talk of July 2003 TIBTOB
3
D. Giordano - Università & INFN di Bari3 Norm.Factor Vs RunNb TIB2 APV 3 TOB1 APV2
4
D. Giordano - Università & INFN di Bari4 HV scan for TIB modules Peak mode: beam runs: 1198,99,1204,07,08,09,11,13,14,15 Dec. Mode: beam @ 25 ns runs: 30024,27,30,33,36,39,42,46 Studies: I Vs HV S/N, Normalized Noise, Cluster Width Vs HV Runs with Hysteresis effect are excluded NEW: Vscan for TIB/TOB Dec mode: beam, beam @ 25 ns, beam runs: 30133,37,40,42,45,47,51,54,62,63,64 74, 75
5
D. Giordano - Università & INFN di Bari5 I Vs HV Peak ModeDec. Mode
6
D. Giordano - Università & INFN di Bari6 S/N Vs HV ~25.5 ~18 Peak ModeDec. Mode
7
D. Giordano - Università & INFN di Bari7 Norm.Noise Vs HV Peak ModeDec. Mode ~1.06 ~1.38 N Dec /N Peak ~ 1.3
8
D. Giordano - Università & INFN di Bari8 Cluster Width Vs HV Peak ModeDec. Mode ~1.15
9
D. Giordano - Università & INFN di Bari9 New Vscan in Dec Mode TOB TIB Acquisition from 12h to 20h
10
D. Giordano - Università & INFN di Bari10 S/N Vs HV Low stat Wrong Fit ~25 ~18
11
D. Giordano - Università & INFN di Bari11 Norm.Noise Vs HV
12
D. Giordano - Università & INFN di Bari12 Cluster Width Vs HV
13
D. Giordano - Università & INFN di Bari13 PLL scan for TIB modules Peak mode:I SHA scan @ HV = 300 V runs: 1154, 2290, 1225, 1300 ( beam, beam) Dec. Mode: HV scan @ I SHA =40, V FS =60 runs: 30029,32,35,38,41,45 ( beam @ 25 ns) Studies: Fit of Signal Shape Normalized Signal, Rise Time Vs I SHA or HV Delay curves per strips
14
D. Giordano - Università & INFN di Bari14 Peak mode: Signal Shape Run 1154 Signal (ADC counts) Norm.Signal (ADC counts) PLL Delay (ns) CR-RC fit of Signal Shape
15
D. Giordano - Università & INFN di Bari15 Peak Mode: Scan in I SHA Norm.Signal (ADC counts) V FS = 60 Norm.Signal (ADC counts)
16
D. Giordano - Università & INFN di Bari16 Dec mode: Signal Shape Run 30032 = t 9/10 – t 1/10 Signal (ADC counts) Norm.Signal (ADC counts) PLL Delay (ns) Gaussian fit of Signal Shape = t 9/10 – t 1/10
17
D. Giordano - Università & INFN di Bari17 Dec mode: Noise Vs PLL Delay Run 30032
18
D. Giordano - Università & INFN di Bari18 Dec mode: Scan in HV Norm.Signal (ADC counts) Module TIB 2 I SHA = 40,V FS = 60
19
D. Giordano - Università & INFN di Bari19 Peak mode: Eta & PLL Delay (ns) Eta Width = 1 Width = 2 Run 1154 - TIB2 Width > 2 |Eta -0.5| < 0.3 Peak Time
20
D. Giordano - Università & INFN di Bari20 Dec mode: Run 30032 - TIB2
21
D. Giordano - Università & INFN di Bari21 Delay Curves Q Seed Q -1 Q +1 DEF: Q C = Q Clus Q S = Q Seed Q u = max( Q -1, Q +1 ) Q L = min( Q -1, Q +1 ) Q C, Q S, Q U, Q L Vs PLL Delay @ Studies: |Eta -0.5|<0.3 0.3<|Eta -0.5| Estimate Norm.Signal, PeakTime, tau for each Delay curve Scan in I SHA or HV
22
D. Giordano - Università & INFN di Bari22 Peak mode: Delay curves Run 1154 - TIB2 0.3 < |Eta – 0.5| QCQC QSQS QLQL QUQU
23
D. Giordano - Università & INFN di Bari23 Peak mode: Delay curves Run 1154 - TIB2 |Eta – 0.5| < 0.3 QCQC QSQS QLQL QUQU
24
D. Giordano - Università & INFN di Bari24 Peak Mode: Scan in I SHA of Qc Norm.Signal (ADC counts) V FS = 60 Tau (ns) 0.3 < |Eta – 0.5||Eta – 0.5| < 0.3 TIB2 QCQC QCQC
25
D. Giordano - Università & INFN di Bari25 Peak Mode: Scan in I SHA of Tp DEF: Tp = Peak Time of Qi – Peak Time of Qc V FS = 60 |Eta – 0.5| < 0.3 TIB2 0.3 < |Eta – 0.5| Tp QSQS QLQL QUQU QSQS QLQL QUQU
26
D. Giordano - Università & INFN di Bari26 Dec mode: Delay curves Run 30032 - TIB2 0.3 < |Eta – 0.5| QCQC QSQS QLQL QUQU I SHA = 40,V FS = 60
27
D. Giordano - Università & INFN di Bari27 Dec mode: Delay curves Run 30032 - TIB2 |Eta – 0.5| < 0.3 QCQC QSQS QLQL QUQU I SHA = 40,V FS = 60
28
D. Giordano - Università & INFN di Bari28 High Statistic Runs for TIB Peak mode: runs: beam 1351,52,53 beam @ 25 ns1484 Dec. Mode: runs: beam1332 Studies: S/N Noise Width Vs Cluster Position selecting events in the range StripNb ± 0.5
29
D. Giordano - Università & INFN di Bari29 Dec. Mode: Beam Profile 256 ÷ 512 1 ÷ 120 Dead Strips: 69, 70 TIB 2 Run 1332 TIB 5
30
D. Giordano - Università & INFN di Bari30 Dec. Mode: S/N Vs Cluster Position S/N = 17.6S/N = 17.4 TIB 2TIB 5 Dead Strips
31
D. Giordano - Università & INFN di Bari31 Dec. Mode: Width Vs Clus. Position Mean 1.72 TIB 2 TIB 5 Mean 1.78 Dead Strips
32
D. Giordano - Università & INFN di Bari32 Dec. Mode: Noise Vs Clus. Position TIB 2TIB 5 Dead Strips
33
D. Giordano - Università & INFN di Bari33 Peak Mode: S/N & Noise Vs Clus.Pos. 25.8 TIB 2 Run 1351 TIB 5 Dead Strips
34
D. Giordano - Università & INFN di Bari34 Peak Mode: Width Vs Clus. Position Mean 1.58 Mean 1.43
35
D. Giordano - Università & INFN di Bari35 PLL scan: Pattern 00100 Run 30257 Run 30258 beam @ 25 ns On time
36
D. Giordano - Università & INFN di Bari36 Comment on Eta Common Block ALLCLUST in ntuple 1001 (file _tt6.hbook) clusEta(totCluster) Width = 1 Width > 0 Eta = Q L /(Q R +Q L ) Clusid = 1 Q L, Q R from maxstr_charge_cl charge_np_cl charge_nm_cl
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.