Download presentation
Presentation is loading. Please wait.
Published byClement Hutchinson Modified over 10 years ago
1
Graphs
2
Data structures that connect a set of objects to form a kind of a network Objects are called “Nodes” or “Vertices” Connections are called “Edges” 2
3
Types of Graphs 3 Directed vs. undirected Undirected (Edges have no direction) Directed (Edges have directions) Weighted vs. unweighted Unweighted (Edges have no cost/weight) Weighted (Edges have associated cost/weight)
4
Types of Graphs (Cont’d) 4 Dense vs. Sparse Dense graphs (many edges between nodes) Sparse graphs (few edges between nodes) If the graph has n vertices (nodes) Maximum # of edges is n 2 In dense graphs number of edges is close to n 2 In sparse graphs number of edges is close to n
5
5 Some Graph Applications transportation Graph street intersections NodesEdges highways communicationcomputersfiber optic cables World Wide Webweb pageshyperlinks socialpeoplerelationships food webspeciespredator-prey software systemsfunctionsfunction calls schedulingtasksprecedence constraints circuitsgateswires
6
6 World Wide Web Web graph. n Node: web page. n Edge: hyperlink from one page to another. cnn.com cnnsi.com novell.comnetscape.com timewarner.com hbo.com sorpranos.com
7
7 Social Network Social network graph. n Node: people. n Edge: relationship between two people. Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs
8
Protein Networks 8 Nodes are proteins Edges are connections (interaction between proteins)
9
More Formalization 9
10
10 Undirected Graphs Undirected graph. G = (V, E) n V = set of nodes or vertices n E = edges between pairs of nodes. n Graph size parameters: n = |V|, m = |E|. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = |V| = 8 m = |E| = 11
11
Graph Representation Two main methods 11 Adjacency MatrixAdjacency List
12
12 Graph Representation: Adjacency Matrix Adjacency matrix. V-by-V matrix (A) n A[i, j] = 1 if exists edge between node i and node j n Space proportional to V 2 n Checking if (u, v) is an edge takes (1) time. n Identifying all edges takes (V 2 ) time. n For undirected graph matrix is symmetric across the diagonal 1 2 3 4 5 6 7 8 1 0 1 1 0 0 0 0 0 2 1 0 1 1 1 0 0 0 3 1 1 0 0 1 0 1 1 4 0 1 0 1 1 0 0 0 5 0 1 1 1 0 1 0 0 6 0 0 0 0 1 0 0 0 7 0 0 1 0 0 0 0 1 8 0 0 1 0 0 0 1 0 Vertices
13
13 Graph Representation: Adjacency List Adjacency list. Node indexed array of lists. n Two representations of each edge. n Space proportional to O(E + V). n Checking if (u, v) is an edge takes O(deg(u)) time. n Identifying all edges takes (E + V) time. 1 23 2 3 4 25 5 6 7 38 8 1345 125 8 7 2346 5 degree = number of neighbors of u 37
14
Degree of a Node In-degree(v): Number of edges coming to (entering) node v Out-degree(v): Number of edges getting out (leaving) node v For Undirected graphs In-degree = Out-degree 14 In-degree(V3) = Out-degree(3) = 5 In-degree(E) = 2 Out-degree(E) = 3
15
Graph Traversal 15
16
Graph Traversal Graph Traversal means visiting each node in the graph There is a starting node (s) Two main types of traversal Breadth-First-Search (BFS) Depth-First-Search (DFS) Both are applicable for directed and undirected graphs 16 BFSDFS
17
17 Breadth First Search s 2 5 4 7 8 369 s L1L1 L2L2 L n-1 Visit the nodes one-level at a time Requires a queue (First-come-first-served)
18
18 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s
19
19 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: s 2 Top of queue 3 1 1
20
20 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: s 2 3 Top of queue 5 1 1 1
21
21 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 2 3 5 Top of queue 1 1 1
22
22 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 2 3 5 Top of queue 4 1 1 1 2
23
23 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 2 3 5 4 Top of queue 1 1 1 2 5 already discovered: don't enqueue
24
24 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 2 3 5 4 Top of queue 1 1 1 2
25
25 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 3 5 4 Top of queue 1 1 1 2
26
26 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 3 5 4 Top of queue 1 1 1 2 6 2
27
27 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 3 5 4 6 Top of queue 1 1 1 2 2
28
28 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 5 4 6 Top of queue 1 1 1 2 2
29
29 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 5 4 6 Top of queue 1 1 1 2 2
30
30 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 4 6 Top of queue 1 1 1 2 2
31
31 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 4 6 Top of queue 1 1 1 2 2 8 3
32
32 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 4 6 8 Top of queue 1 1 1 2 2 3
33
33 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 6 8 Top of queue 1 1 1 2 2 3 7 3
34
34 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 6 8 7 Top of queue 1 1 1 2 2 3 9 3 3
35
35 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 6 8 7 9 Top of queue 1 1 1 2 2 3 3 3
36
36 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 8 7 9 Top of queue 1 1 1 2 2 3 3 3
37
37 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 7 9 Top of queue 1 1 1 2 2 3 3 3
38
38 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 7 9 Top of queue 1 1 1 2 2 3 3 3
39
39 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 7 9 Top of queue 1 1 1 2 2 3 3 3
40
40 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 7 9 Top of queue 1 1 1 2 2 3 3 3
41
41 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 9 Top of queue 1 1 1 2 2 3 3 3
42
42 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 9 Top of queue 1 1 1 2 2 3 3 3
43
43 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: 9 Top of queue 1 1 1 2 2 3 3 3
44
44 Breadth First Search s 2 5 4 7 8 369 0 Undiscovered Discovered Finished Queue: Top of queue 1 1 1 2 2 3 3 3
45
45 Breadth First Search s 2 5 4 7 8 369 0 Starting from s, we visited all (reachable) nodes BFS forms a tree rooted at s (BFS Tree) For each node x reachable from s we created a shortest path from s to x 1 1 1 2 2 3 3 3
46
46 Breadth First Search Example problems in which we use BFS Find if node x is reachable from node y Start from node y and do BFS Find the shortest path from node x to node y Start from node x and perform BFS Search for a value v in the graph Start from any node and perform BFS Always keep in mind whether we talk about undirected graph or directed graph
47
47 Breadth First Search: Algorithm Start at node v Can do any processing on t
48
48 Breadth First Search: Analysis Theorem. The above implementation of BFS runs in O(V + E) time if the graph is given by its adjacency list. Proof n Each node will be queued only once O(V) n For each node, we visit all its out edges O(E) – In fact each edge (u,v) is visited twice once from u’s side and once form v’s side n Total is O(V + E)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.